1
|
Baptista-Perianes A, Simbara MMO, Malmonge SM, da Cunha MR, Buchaim DV, Miglino MA, Kassis EN, Buchaim RL, Santos AR. Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers (Basel) 2024; 16:3054. [PMID: 39518269 PMCID: PMC11548402 DOI: 10.3390/polym16213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness and porosity of the scaffolds were determined. Functional assessments of mesenchymal stem cells (MSCs) included the MTT assay, alkaline phosphatase (ALP) production, and morphological and cytochemical analyses. Moreover, these polymers were implanted into rats to evaluate their in vivo performance. The morphology and FTIR spectra of the scaffolds were consistent with the expected results. Porous polymers were thicker than dense polymers, and porosity was higher than 92% in all samples. The cells exhibited good viability, activity, and growth on the scaffolds. A higher number of cells was observed on dense polymers, likely due to their smaller surface area. ALP production occurred in all samples, but enzyme activity was more intense in PCL samples. The scaffolds did not interfere with the osteogenic capacity of MSCs, and mineralized nodules were present in all samples. Histological analysis revealed new bone formation in all samples, although pure PHBV exhibited lower results compared to the other blends. In vivo results indicated that dense PCL and the dense 75/25 blend were the best materials tested, with PCL tending to improve the performance of PHBV in vivo.
Collapse
Affiliation(s)
- Amália Baptista-Perianes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| | - Marcia Mayumi Omi Simbara
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Sônia Maria Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil; (M.M.O.S.); (S.M.M.)
| | - Marcelo Rodrigues da Cunha
- Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil; (D.V.B.); (M.A.M.)
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Elias Naim Kassis
- University Center of the North of São Paulo (UNORTE), São José Do Rio Preto 15020-040, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil;
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Arnaldo Rodrigues Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo do Campo 09606-070, Brazil;
| |
Collapse
|
2
|
Gadalla D, Kennedy M, Ganem J, Suppah M, Schmitt A, Lott DG. Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model. J Tissue Eng Regen Med 2024; 2024:2515383. [PMID: 40225757 PMCID: PMC11919145 DOI: 10.1155/2024/2515383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 04/15/2025]
Abstract
Wound healing is an intricate process involving multiple cells and distinct phases, presenting challenges for comprehensive investigations. Currently available treatments for wounds have limited capacity to fully restore tissue and often require significant investments of time in the form of repetitive dressing changes and/or reapplications. This article presents a novel study that aims to enhance wound healing by developing biomaterial scaffolds using Medpor®, a porous polyethylene implant, as a model scaffold. The study incorporates electrospun poly(e-caprolactone) (PCL) fibers and a protein mixture (PM) containing collagen IV and laminin onto the Medpor® scaffolds. To evaluate the impact of these implants on wound healing, a unique splinted wound model in mice is employed. The wounds were evaluated for closure, inflammation, collagen deposition, angiogenesis, epithelialization, and proliferation. The results show that wounds treated with Medpor® + PCL + PM implants demonstrate accelerated closure rates, improved epithelialization, and enhanced angiogenesis compared to other implant groups. However, there were no significant differences observed in collagen deposition and inflammatory response among the implant groups. This study provides valuable insights into the potential benefits of incorporating PCL fibers and a PM onto scaffolds to enhance wound healing. Furthermore, the developed splinted wound model with integrated implants offers a promising platform for future studies on implant efficacy and the advancement of innovative wound healing strategies.
Collapse
Affiliation(s)
- Dina Gadalla
- Head and Neck Regenerative Medicine LaboratoryMayo Clinic Arizona, Phoenix 85054, AZ, USA
| | - Maeve Kennedy
- Head and Neck Regenerative Medicine LaboratoryMayo Clinic Arizona, Phoenix 85054, AZ, USA
| | - Jamie Ganem
- Head and Neck Regenerative Medicine LaboratoryMayo Clinic Arizona, Phoenix 85054, AZ, USA
| | - Mustafa Suppah
- Head and Neck Regenerative Medicine LaboratoryMayo Clinic Arizona, Phoenix 85054, AZ, USA
| | - Alessandra Schmitt
- Department of Laboratory Medicine & PathologyDivision of Anatomic PathologyMayo Clinic Arizona, Phoenix 85054, USA
| | - David G. Lott
- Head and Neck Regenerative Medicine LaboratoryMayo Clinic Arizona, Phoenix 85054, AZ, USA
- Department of OtolaryngologyDivision of LaryngologyMayo Clinic Arizona, Phoenix 85054, USA
| |
Collapse
|
3
|
Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:233-248. [PMID: 36065207 PMCID: PMC9440077 DOI: 10.1016/j.jdsr.2022.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anatomy of the oral and maxillofacial sites is complex, and bone defects caused by trauma, tumors, and inflammation in these zones are extremely difficult to repair. Among the most effective and reliable methods to attain osteogenesis, the guided bone regeneration (GBR) technique is extensively applied in defective oral and maxillofacial GBR. Furthermore, endowing biofunctions is crucial for GBR materials applied in repairing defective alveolar and maxillofacial bones. In this review, recent advances in designing and fabricating GBR materials applied in oral and maxillofacial sites are classified and discussed according to their biofunctions, including maintaining space for bone growth; facilitating the adhesion, migration, and proliferation of osteoblasts; facilitating the migration and differentiation of progenitor cells; promoting vascularization; providing immunoregulation to induce osteogenesis; suppressing infection; and effectively mimicking natural tissues using graded biomimetic materials. In addition, new processing strategies (e.g., 3D printing) and new design concepts (e.g., developing bone mimetic extracellular matrix niches and preparing scaffolds to suppress connective tissue to actively acquire space for bone regeneration), are particularly worthy of further study. In the future, GBR materials with richer biological functions are expected to be developed based on an in-depth understanding of the mechanism of bone-GBR-material interactions.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Chengmin Feng
- Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author.
| |
Collapse
|
4
|
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. NANOMATERIALS 2022; 12:nano12111829. [PMID: 35683685 PMCID: PMC9181850 DOI: 10.3390/nano12111829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Collapse
|
5
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
6
|
Siverino C, Fahmy-Garcia S, Mumcuoglu D, Oberwinkler H, Muehlemann M, Mueller T, Farrell E, van Osch GJVM, Nickel J. Site-Directed Immobilization of an Engineered Bone Morphogenetic Protein 2 (BMP2) Variant to Collagen-Based Microspheres Induces Bone Formation In Vivo. Int J Mol Sci 2022; 23:ijms23073928. [PMID: 35409290 PMCID: PMC8999711 DOI: 10.3390/ijms23073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs.
Collapse
Affiliation(s)
- Claudia Siverino
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Shorouk Fahmy-Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Internal Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Didem Mumcuoglu
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Fujifilm Manufacturing Europe B.V., 5047 TK Tilburg, The Netherlands
| | - Heike Oberwinkler
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Markus Muehlemann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
| | - Thomas Mueller
- Department for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, 97082 Wuerzburg, Germany;
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.F.-G.); (D.M.); (G.J.V.M.v.O.)
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (C.S.); (H.O.); (M.M.)
- Fraunhofer ISC, Translational Center RT, 97070 Wuerzburg, Germany
- Correspondence: ; Tel.: +49-0931-3184122
| |
Collapse
|
7
|
Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide- co-caprolactone) Scaffold. MATERIALS 2022; 15:ma15051900. [PMID: 35269131 PMCID: PMC8911644 DOI: 10.3390/ma15051900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL) electrospun scaffolds with seeded stem cells have drawn great interest in tissue engineering. This study investigated the biological behavior of human dental pulp stem cells (hDPSCs) grown on a hydrolytically-modified PLCL nanofiber scaffold. The hDPSCs were seeded on PLCL, and their biological features such as viability, proliferation, adhesion, population doubling time, the immunophenotype of hDPSCs and osteogenic differentiation capacity were evaluated on scaffolds. The results showed that the PLCL scaffold significantly supported hDPSC viability/proliferation. The hDPSCs adhesion rate and spreading onto PLCL increased with time of culture. hDPSCs were able to migrate inside the PLCL electrospun scaffold after 7 days of seeding. No differences in morphology and immunophenotype of hDPSCs grown on PLCL and in flasks were observed. The mRNA levels of bone-related genes and their proteins were significantly higher in hDPSCs after osteogenic differentiation on PLCL compared with undifferentiated hDPSCs on PLCL. These results showed that the mechanical properties of a modified PLCL mat provide an appropriate environment that supports hDPSCs attachment, proliferation, migration and their osteogenic differentiation on the PLCL scaffold. The good PLCL biocompatibility with dental pulp stem cells indicates that this mat may be applied in designing a bioactive hDPSCs/PLCL construct for bone tissue engineering.
Collapse
|
8
|
Gadalla D, Tchoukalova YD, Lott DG. Regenerating airway epithelium using fibrous biomimetic basement membranes. J Biomed Mater Res A 2022; 110:1251-1262. [PMID: 35142434 DOI: 10.1002/jbm.a.37371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
There are reciprocal interactions between epithelial cells and underlying basement membrane. The resemblance of biomaterials to native basement membrane is thus critical for their success when used to regenerate epithelium-containing organs. Particularly, the use of nanofibers and the incorporation of basement membrane proteins may mimic both biophysical and biochemical properties of basement membrane, respectively. Herein we tested how electrospun polycaprolactone/heparin fibers with and without adsorbed laminin and collagen IV proteins affect epithelial cell functions. We found that airway epithelial cells attached, migrated, and proliferated on all scaffolds but protein-functionalized fibers promoted higher attachment, quicker migration, and increased proliferation. Fibers were then integrated on polyethylene scaffolds and cultured at an air-liquid interface. The detection of secretory and ciliated cell markers was higher in cells on polyethylene with fibers. These findings demonstrate that electrospun fibers incite beneficial epithelial cell responses and can be used in the fabrication of bioengineered functional epithelia.
Collapse
Affiliation(s)
- Dina Gadalla
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Phoenix, Arizona, USA.,Division of Laryngology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
9
|
A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
11
|
Mosaad KE, Shoueir KR, Saied AH, Dewidar MM. New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Ann Biomed Eng 2021; 49:2006-2029. [PMID: 34378121 DOI: 10.1007/s10439-021-02810-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering. Besides, nanostructured materials have properties and functions depending on the scale of natural materials such as hydroxyapatite (HAP), ranging from 1 to 100 nm, which activity was proficient upon enrolled in nanofiber mats. The use of nanofibers in combination with nano-HAP has increased the scaffold's ability to replicate the construction of natural bone tissue that is the aim of the present text. In bone engineering, nanofiber substrates facilitate cell adhesion, proliferation, and differentiation, while HAP induces cells to secrete ECM for bone mineralization and development. This review aims to draw the reader's attention to the critical issues with synthetic and natural polymers containing HAP in bone tissue engineering; co-substituted hydroxyapatite has also been mentioned.
Collapse
Affiliation(s)
- Kareem E Mosaad
- Faculty of Engineering, Mechanical Department, Al-Azahar University, Cairo, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Ahmed H Saied
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
| | - Montasser M Dewidar
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
- Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt
| |
Collapse
|
12
|
Zhongxing L, Shaohong W, Jinlong L, Limin Z, Yuanzheng W, Haipeng G, Jian C. Three-dimensional printed hydroxyapatite bone tissue engineering scaffold with antibacterial and osteogenic ability. J Biol Eng 2021; 15:21. [PMID: 34372891 PMCID: PMC8353754 DOI: 10.1186/s13036-021-00273-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
The development of an effective scaffold for bone defect repair is an urgent clinical need. However, it is challenging to design a scaffold with efficient osteoinduction and antimicrobial activity for regeneration of bone defect. In this study, we successfully prepared a hydroxyapatite (HA) porous scaffold with a surface-specific binding of peptides during osteoinduction and antimicrobial activity using a three-dimensional (3D) printing technology. The HA binding domain (HABD) was introduced to the C-terminal of bone morphogenetic protein 2 mimetic peptide (BMP2-MP) and antimicrobial peptide of PSI10. The binding capability results showed that BMP2-MP and PSI10-containing HABD were firmly bound to the surface of HA scaffolds. After BMP2-MP and PSI10 were bound to the scaffold surface, no negative effect was observed on cell proliferation and adhesion. The gene expression and protein translation levels of type I collagen (COL-I), osteocalcin (OCN) and Runx2 have been significantly improved in the BMP2-MP/HABP group. The level of alkaline phosphatase significantly increased in the BMP2-MP/HABP group. The inhibition zone test against Staphylococcus aureus and Escherichia coli BL21 prove that the PSI10/HABP@HA scaffold has strong antibacterial ability than another group. These findings suggest that 3D-printed HA scaffolds with efficient osteoinduction and antimicrobial activity represent a promising biomaterial for bone defect reconstruction.
Collapse
Affiliation(s)
- Liu Zhongxing
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Wu Shaohong
- Department of Stomatology, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Li Jinlong
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China.
| | - Zhang Limin
- Department of Ophthalmology, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Wang Yuanzheng
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Gao Haipeng
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China
| | - Cao Jian
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Inner Mongolia, 024000, Chifeng, People's Republic of China.
| |
Collapse
|
13
|
Sharma D, Mathur VP, Satapathy BK. Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives. Ann Biomed Eng 2021; 49:2030-2056. [PMID: 34318403 DOI: 10.1007/s10439-021-02839-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vijay Prakash Mathur
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Gresham RC, Bahney CS, Leach JK. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioact Mater 2021; 6:1945-1956. [PMID: 33426369 PMCID: PMC7773685 DOI: 10.1016/j.bioactmat.2020.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic approaches for musculoskeletal tissue regeneration commonly employ growth factors (GFs) to influence neighboring cells and promote migration, proliferation, or differentiation. Despite promising results in preclinical models, the use of inductive biomacromolecules has achieved limited success in translation to the clinic. The field has yet to sufficiently overcome substantial hurdles such as poor spatiotemporal control and supraphysiological dosages, which commonly result in detrimental side effects. Physiological presentation and retention of biomacromolecules is regulated by the extracellular matrix (ECM), which acts as a reservoir for GFs via electrostatic interactions. Advances in the manipulation of extracellular proteins, decellularized tissues, and synthetic ECM-mimetic applications across a range of biomaterials have increased the ability to direct the presentation of GFs. Successful application of biomaterial technologies utilizing ECM mimetics increases tissue regeneration without the reliance on supraphysiological doses of inductive biomacromolecules. This review describes recent strategies to manage GF presentation using ECM-mimetic substrates for the regeneration of bone, cartilage, and muscle.
Collapse
Affiliation(s)
| | - Chelsea S. Bahney
- Steadman Phillippon Research Institute, Vail, CO, USA
- UCSF Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - J. Kent Leach
- UC Davis, Department of Biomedical Engineering, Davis, CA, USA
- UC Davis Health, Department of Orthopaedic Surgery, Davis, CA, USA
| |
Collapse
|
15
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
16
|
Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B 2021; 9:2594-2612. [PMID: 33666632 DOI: 10.1039/d0tb02983a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone infection is a devastating disease characterized by recurrence, drug-resistance, and high morbidity, that has prompted clinicians and scientists to develop novel approaches to combat it. Currently, although numerous biomaterials that possess excellent biocompatibility, biodegradability, porosity, and mechanical strength have been developed, their lack of effective antibacterial ability substantially limits bone-defect treatment efficacy. There is, accordingly, a pressing need to design antibacterial biomaterials for effective bone-infection prevention and treatment. This review focuses on antibacterial biomaterials and strategies; it presents recently reported biomaterials, including antibacterial implants, antibacterial scaffolds, antibacterial hydrogels, and antibacterial bone cement types, and aims to provide an overview of these antibacterial materials for application in biomedicine. The antibacterial mechanisms of these materials are discussed as well.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Orthopedic Department, Peking University Third Hospital, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
17
|
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol 2021; 175:544-557. [PMID: 33571587 DOI: 10.1016/j.ijbiomac.2021.02.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.
Collapse
Affiliation(s)
- Banafsheh Safari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Shaw GS, Dash RA, Samavedi S. Evaluating the protective role of carrier microparticles in preserving protein secondary structure within electrospun meshes. J Appl Polym Sci 2020. [DOI: 10.1002/app.50016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Ricky A. Dash
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Hyderabad India
| |
Collapse
|