1
|
Gąsecka A, Błażejowska E, Konieczka A, Leśniewski M, Ostaszewska M, Łomiak M, Gajewska M, Rogula S, Szarpak Ł, Filipiak KJ, Zawadka M, Jama K, Andruszkiewicz P, Grabowski M, Jakimowicz T. Branched endovascular aortic aneurysm repair decreases platelet reactivity and platelet-rich thrombus formation - a prospective, cohort study. Platelets 2025; 36:2458622. [PMID: 39927498 DOI: 10.1080/09537104.2025.2458622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Appropriate platelet function determines both the perioperative haemostasis and the risk of postoperative thrombotic complications in patients undergoing branched endovascular repair (bEVAR) of thoracoabdominal aortic aneurysm (TAAA). We aimed to assess the effect of bEVAR on platelet function and the predictive value of preoperative platelet function for postoperative bleeding. We measured platelet function using impedance aggregometry and total thrombus-formation analysis system in 50 consecutive patients, with TAAA undergoing elective bEVAR. After bEVAR, platelet reactivity was assessed using ASPI test, ADP test and TRAP test and thrombus size decreased, whereas time to clot formation increased, compared to baseline (p ≤ .042 for all). Preoperative platelet reactivity in the TRAP test was lower in patients who experienced post-operative bleeding, defined as ≥3 red blood cell units transfusion, compared to those who did not (p = .038). Baseline hemoglobin level <13 g/dl and TRAP test result ≤29.5 AUC increased the odds of bleeding by 5.4-fold and 6.8-fold, respectively, independent of other clinical variables. We conclude that in patients with TAAA undergoing bEVAR, platelet reactivity and platelet-rich thrombus formation decreased directly after the operation. Preoperative hemoglobin level and platelet reactivity in the TRAP test were independent predictors of postoperative bleeding complications.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Ewelina Błażejowska
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Agata Konieczka
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Mateusz Leśniewski
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Magdalena Ostaszewska
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Michał Łomiak
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Magdalena Gajewska
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Sylwester Rogula
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Łukasz Szarpak
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute of Medical Science, Collegium Medicum, The John Paul II Catholic University of Lublin, Lublin, Poland
- Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Zawadka
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Jama
- 2nd Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Paweł Andruszkiewicz
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Clinical Research and Development, LUXMED Group, Warsaw, Poland
| | - Tomasz Jakimowicz
- 2nd Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| |
Collapse
|
2
|
Liu Q, Lassila T, Lin F, MacRaild M, Patankar T, Islim F, Song S, Xu H, Chen X, Taylor ZA, Sarrami-Foroushani A, Frangi AF. Key influencers in an aneurysmal thrombosis model: A sensitivity analysis and validation study. APL Bioeng 2025; 9:016107. [PMID: 39959383 PMCID: PMC11826514 DOI: 10.1063/5.0223753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Thrombosis is a biological response closely related to intracranial aneurysms, and the formation of thrombi inside the aneurysm is an important determinant of outcome after endovascular therapy. As the regulation of thrombosis is immensely complicated and the mechanisms governing thrombus formation are not fully understood, mathematical and computational modeling has been increasingly used to gain insight into thrombosis over the last 30 years. To have a robust computational thrombosis model for possible clinical use in the future, it is essential to assess the model's reliability through comprehensive sensitivity analysis of model parameters and validation studies based on clinical information of real patients. Here, we conduct a global sensitivity analysis on a previously developed thrombosis model, utilizing thrombus composition, the flow-induced platelet index, and the bound platelet concentration as output metrics. These metrics are selected for their relevance to thrombus stability. The flow-induced platelet index quantifies the effect of blood flow on the transport of platelets to and from the site of thrombus formation and thus on the final platelet content of the formed thrombus. The sensitivity analysis of the thrombus composition indicates that the concentration of resting platelets most influences the final thrombus composition. Then, for the first time, we validate the thrombosis model based on a real patient case using patient-specific resting platelet concentration and two previously calibrated trigger thresholds for thrombosis initiation. We show that our thrombosis model is capable of predicting thrombus formation both before and after endovascular treatment.
Collapse
Affiliation(s)
- Qiongyao Liu
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | - Toni Lassila
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | - Fengming Lin
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | | | | | - Fathallah Islim
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Shuang Song
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huanming Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiang Chen
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Zeike A. Taylor
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | | | | |
Collapse
|
3
|
Barros G, Federico E, Fillingham P, Chanana P, Kaneko N, Zheng Y, Kim LJ, Levitt MR. Endothelial Cell Transcription Modulation in Cerebral Aneurysms After Endovascular Flow Diversion. Ann Biomed Eng 2024; 52:3253-3263. [PMID: 39095638 PMCID: PMC11563914 DOI: 10.1007/s10439-024-03591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Flow diverting stents (FDS) are used to treat cerebral aneurysms, by promoting thrombosis and occlusion of the aneurysm sac. However, retreatment is required in some cases, and the biologic basis behind treatment outcome is not known. The goal of this study was to understand how changes in hemodynamic flow after FDS placement affect aneurysmal endothelial cell (EC) activity. METHODS Three-dimensional models of patient-specific aneurysms were created to quantify the EC response to FDS placement. Computational fluid dynamic simulations were used to determine the hemodynamic impact of FDS. Two identical models were created for each patient; into one a FDS was inserted. Each model was then populated with human carotid ECs and subjected to patient-specific pulsatile flow for 24 h. ECs were isolated from aneurysm dome from each model and bulk RNA sequencing was performed. RESULTS Paired untreated and treated models were created for four patients. Aneurysm dome EC analysis revealed 366 (2.6%) significant gene changes between the untreated and FDS conditions, out of 13909 total expressed genes. Gene set enrichment analysis of the untreated models demonstrated enriched gene ontology terms related to cell adhesion, growth/tensile activity, cytoskeletal organization, and calcium ion binding. In the FDS models, enriched terms were related to cellular proliferation, ribosomal activity, RNA splicing, and protein folding. CONCLUSION Treatment of cerebral aneurysms with FDS induces significant EC gene transcription changes related to aneurysm hemodynamics in patient-specific in vitro 3D-printed models subjected to pulsatile flow. Further investigation is needed into the relationship between transcriptional change and treatment outcome.
Collapse
Affiliation(s)
- Guilherme Barros
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Emma Federico
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Pritha Chanana
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Louis J Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Michael R Levitt
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA.
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Jahandardoost M, Ricci D, Milani AS, Jahandardoost M, Grecov D. A comprehensive simulation framework for predicting the eCLIPs implant crimping into a catheter and its deployment mechanisms. J Mech Behav Biomed Mater 2024; 150:106227. [PMID: 37995603 DOI: 10.1016/j.jmbbm.2023.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Tubular flow diverters (FDs) represent an important subset of the endovascular treatment of cerebral aneurysms (CAs), acting to reduce aneurysm inflow, eventually resulting in aneurysm thrombosis and occlusion. eCLIPs (product of Evasc Neurovascular Enterprises, Vancouver, Canada), an innovative non-tubular implant causes flow diversion by bridging the neck of bifurcation CAs. However, in a small subset of challenging bifurcation aneurysms with fusiform pathology, the currently available eCLIPs models do not provide sufficient neck bridging resulting in a gap created between the device structure and the aneurysm/artery wall. To overcome this challenge, a new design of the eCLIPs (VR-eCLIPs) was developed by varying the rib length to cover such an inflow gap. To optimize the new product development process, and avoiding expensive and time-consuming iterative manufacture of prototype devices, we have developed a new finite element model to simulate the crimping and expansion processes of the VR-eCLIPs implant, and assess the possibility of plastic deformation. Results indicated that neither eCLIPs nor VR-eCLIPs experience plastic deformation during the crimping process. Upon full expansion, the ribs of VR-eCLIPs interact with the aneurysm and artery wall to cover the inflow gap that exists in certain challenging anatomies. This process serves as a basis to expedite design development prior to prototype manufacturing.
Collapse
Affiliation(s)
- Mehdi Jahandardoost
- Industrial and Biological Multiphysics Research Lab, Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Materials and Manufacturing Research Institute, University of British Columbia, Kelowna, BC, Canada.
| | - Donald Ricci
- eVasc Neurovascular Enterprise, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Abbas S Milani
- Materials and Manufacturing Research Institute, University of British Columbia, Kelowna, BC, Canada; Composites Research Network-Okanagan Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada.
| | - Mohsen Jahandardoost
- Department of Mechanical Engineering, University of Pittsburgh, Johnstown, PA, USA.
| | - Dana Grecov
- Industrial and Biological Multiphysics Research Lab, Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Liu Q, Sarrami-Foroushani A, Wang Y, MacRaild M, Kelly C, Lin F, Xia Y, Song S, Ravikumar N, Patankar T, Taylor ZA, Lassila T, Frangi AF. Hemodynamics of thrombus formation in intracranial aneurysms: An in silico observational study. APL Bioeng 2023; 7:036102. [PMID: 37426382 PMCID: PMC10329514 DOI: 10.1063/5.0144848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
How prevalent is spontaneous thrombosis in a population containing all sizes of intracranial aneurysms? How can we calibrate computational models of thrombosis based on published data? How does spontaneous thrombosis differ in normo- and hypertensive subjects? We address the first question through a thorough analysis of published datasets that provide spontaneous thrombosis rates across different aneurysm characteristics. This analysis provides data for a subgroup of the general population of aneurysms, namely, those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis rates, our computational modeling platform enables the first in silico observational study of spontaneous thrombosis prevalence across a broader set of aneurysm phenotypes. We generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds: residence time and shear rate, thus addressing the second question. We then address the third question by utilizing this calibrated model to provide new insight into the effects of hypertension on spontaneous thrombosis. We demonstrate how a mechanistic thrombosis model calibrated on an intracranial aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader aneurysm population. This study is enabled through a fully automatic multi-scale modeling pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level validation of a complex computational modeling framework. Furthermore, our framework allows exploration of the influence of hypertension in spontaneous thrombosis. This lays the foundation for in silico clinical trials of cerebrovascular devices in high-risk populations, e.g., assessing the performance of flow diverters in aneurysms for hypertensive patients.
Collapse
Affiliation(s)
| | | | | | | | - Christopher Kelly
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | | | | | | | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | | | - Zeike A. Taylor
- School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Toni Lassila
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
6
|
Fillingham P, Romero Bhathal J, Marsh LMM, Barbour MC, Kurt M, Ionita CN, Davies JM, Aliseda A, Levitt MR. Improving the accuracy of computational fluid dynamics simulations of coiled cerebral aneurysms using finite element modeling. J Biomech 2023; 157:111733. [PMID: 37527606 PMCID: PMC10528313 DOI: 10.1016/j.jbiomech.2023.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Cerebral aneurysms are a serious clinical challenge, with ∼half resulting in death or disability. Treatment via endovascular coiling significantly reduces the chances of rupture, but the techniquehas failure rates of ∼20 %. This presents a pressing need to develop a method fordetermining optimal coildeploymentstrategies. Quantification of the hemodynamics of coiled aneurysms using computational fluid dynamics (CFD) has the potential to predict post-treatment outcomes, but representing the coil mass in CFD simulations remains a challenge. We use the Finite Element Method (FEM) for simulating patient-specific coil deployment for n = 4 ICA aneurysms for which 3D printed in vitro models were also generated, coiled, and scanned using ultra-high resolution synchrotron micro-CT. The physical and virtual coil geometries were voxelized onto a binary structured grid and porosity maps were generated for geometric comparison. The average binary accuracy score is 0.8623 and the average error in porosity map is 4.94 %. We then conduct patient-specific CFD simulations of the aneurysm hemodynamics using virtual coils geometries, micro-CT generated oil geometries, and using the porous medium method to represent the coil mass. Hemodynamic parameters including Neck Inflow Rate (Qneck) and Wall Shear Stress (WSS) were calculated for each of the CFD simulations. The average relative error in Qneck and WSS from CFD using FEM geometry were 6.6 % and 21.8 % respectively, while the error from CFD using a porous media approximation resulted in errors of 55.1 % and 36.3 % respectively; demonstrating a marked improvement in the accuracy of CFD simulations using FEM generated coil geometries.
Collapse
Affiliation(s)
- Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.
| | | | - Laurel M M Marsh
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Michael C Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Jason M Davies
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, United States
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Michael R Levitt
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Bass DI, Marsh LMM, Fillingham P, Lim D, Chivukula VK, Kim LJ, Aliseda A, Levitt MR. Modeling the Mechanical Microenvironment of Coiled Cerebral Aneurysms. J Biomech Eng 2023; 145:041005. [PMID: 36193892 PMCID: PMC9791668 DOI: 10.1115/1.4055857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/09/2022] [Indexed: 12/30/2022]
Abstract
Successful occlusion of cerebral aneurysms using coil embolization is contingent upon stable thrombus formation, and the quality of the thrombus depends upon the biomechanical environment. The goal of this study was to investigate how coil embolization alters the mechanical micro-environment within the aneurysm dome. Inertialess particles were injected in three-dimensional, computational simulations of flow inside patient aneurysms using patient-specific boundary conditions. Coil embolization was simulated as a homogenous porous medium of known permeability and inertial constant. Lagrangian particle tracking was used to calculate the residence time and shear stress history for particles in the flow before and after treatment. The percentage of particles entering the aneurysm dome correlated with the neck surface area before and after treatment (pretreatment: R2 = 0.831, P < 0.001; post-treatment: R2 = 0.638, P < 0.001). There was an inverse relationship between the change in particles entering the dome and coil packing density (R2 = 0.600, P < 0.001). Following treatment, the particles with the longest residence times tended to remain within the dome even longer while accumulating lower shear stress. A significant correlation was observed between the treatment effect on residence time and the ratio of the neck surface area to porosity (R2 = 0.390, P = 0.007). The results of this study suggest that coil embolization triggers clot formation within the aneurysm dome via a low shear stress-mediated pathway. This hypothesis links independently observed findings from several benchtop and clinical studies, furthering our understanding of this treatment strategy.
Collapse
Affiliation(s)
- David I. Bass
- Department of Neurological Surgery, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Laurel M. M. Marsh
- Department of Mechanical Engineering, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195
| | - Patrick Fillingham
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Do Lim
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - V. Keshav Chivukula
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Building, Melbourne, FL 32901
| | - Louis J. Kim
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Radiology, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| | - Alberto Aliseda
- Department of Mechanical Engineering, Stroke & Applied Neuroscience Center, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195; Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 3900 East Stevens Way NE, Box 352600, Seattle, WA 98195
| | - Michael R. Levitt
- Department of Neurological Surgery, Stroke & Applied Neuroscience Center, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Radiology, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104; Department of Mechanical Engineering, University of Washington, 325 9th Avenue, Box 359924, Seattle, WA 98104
| |
Collapse
|
8
|
Altındağ B, Bahadır Olcay A, Furkan Tercanlı M, Bilgin C, Hakyemez B. Determining flow stasis zones in the intracranial aneurysms and the relation between these zones and aneurysms' aspect ratios after flow diversions. Interv Neuroradiol 2023:15910199231162878. [PMID: 36945841 DOI: 10.1177/15910199231162878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Flow diverter stents (FDSs) are widely used to treat aneurysms in the clinic. However, even the same flow diverter (FD) use on different patients' aneurysm sites can cause unexpected hemodynamics at the aneurysm region yielding low success rates for the overall treatment. Therefore, the present study aims to unfold why FDs do not work as they are supposed to for some patients and propose empirical correlation along with a contingency table analysis to estimate the flow stasis zones in the aneurysm sacs. METHODS The present work numerically evaluated the use of FRED4518 FDS on six patients' intracranial aneurysms based on patient-specific aneurysm geometries. Computational fluid dynamics (CFD) simulation results were further processed to identify the time evolution of weightless blood particles for six patients' aneurysms. RESULTS Stagnation zone formation, incoming and outgoing blood flow at the aneurysm neck, and statistical analysis of six patients indicated that FRED4518 showed a large flow stasis zone for an aspect ratio larger than 0.75. However, FRED4518, used for aneurysms with an aspect ratio of less than 0.65, caused small stagnant flow zones based on the number of blood particles that stayed in the aneurysm sac. CONCLUSION A patient-specific empirical equation is derived considering aneurysms' morphological characteristics to determine the amount of stagnated fluid flow zones and magnitude of the mean aneurysm velocity in the aneurysm sac for FRED4518 based on weightless fluid particle results for the first time in the literature. As a result, numerical simulation results and patient data-driven equation can help perceive stagnated fluid zone amount before FRED4518 placement by shedding light on neuro-interventional surgeons and radiologists.
Collapse
Affiliation(s)
- Batı Altındağ
- Faculty of Engineering, Department of Mechanical Engineering, 52998Yeditepe University, Istanbul, Turkey
| | - Ali Bahadır Olcay
- Faculty of Engineering, Department of Mechanical Engineering, 52998Yeditepe University, Istanbul, Turkey
| | - Muhammed Furkan Tercanlı
- Faculty of Engineering, Department of Mechanical Engineering, 52998Yeditepe University, Istanbul, Turkey
| | - Cem Bilgin
- Department of Radiology, 4352Mayo Clinic Rochester, Rochester, MN, USA
| | - Bahattin Hakyemez
- Department of Radiology, Uludag University School of Medicine, Gorukle, Bursa, Turkey
| |
Collapse
|
9
|
Mandrycky CJ, Abel AN, Levy S, Marsh LM, Chassagne F, Chivukula VK, Barczay SE, Kelly CM, Kim LJ, Aliseda A, Levitt MR, Zheng Y. Endothelial Responses to Curvature-Induced Flow Patterns in Engineered Cerebral Aneurysms. J Biomech Eng 2023; 145:011001. [PMID: 35838329 PMCID: PMC9445320 DOI: 10.1115/1.4054981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Hemodynamic factors have long been associated with clinical outcomes in the treatment of cerebral aneurysms. Computational studies of cerebral aneurysm hemodynamics have provided valuable estimates of the mechanical environment experienced by the endothelium in both the parent vessel and aneurysmal dome walls and have correlated them with disease state. These computational-clinical studies have recently been correlated with the response of endothelial cells (EC) using either idealized or patient-specific models. Here, we present a robust workflow for generating anatomic-scale aneurysm models, establishing luminal cultures of ECs at physiological relevant flow profiles, and comparing EC responses to curvature mediated flow. We show that flow patterns induced by parent vessel curvature produce changes in wall shear stress (WSS) and wall shear stress gradients (WSSG) that are correlated with differences in cell morphology and cellular protein localization. Cells in higher WSS regions align better with the flow and display strong Notch1-extracellular domain (ECD) polarization, while, under low WSS, differences in WSSG due to curvature change were associated with less alignment and attenuation of Notch1-ECD polarization in ECs of the corresponding regions. These proof-of-concept results highlight the use of engineered cellularized aneurysm models for connecting computational fluid dynamics to the underlying endothelial biology that mediates disease.
Collapse
Affiliation(s)
- Christian J. Mandrycky
- Bioengineering, University of Washington, Seattle, WA 98105; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109
| | - Ashley N. Abel
- Neurological Surgery, University of Washington, Seattle, WA 98195
| | - Samuel Levy
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| | - Laurel M. Marsh
- Mechanical Engineering, University of Washington, Seattle, WA 98195
| | | | | | - Sari E. Barczay
- Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Cory M. Kelly
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| | - Louis J. Kim
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Radiology, University of Washington, Seattle, WA 98195
| | - Alberto Aliseda
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Mechanical Engineering, University of Washington, Seattle, WA 98195
| | - Michael R. Levitt
- Neurological Surgery, University of Washington, Seattle, WA 98195; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104; Mechanical Engineering, University of Washington, Seattle, WA 98195; Radiology, University of Washington, Seattle, WA 98195
| | - Ying Zheng
- Bioengineering, University of Washington, Seattle, WA 98105Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109; Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA 98104
| |
Collapse
|
10
|
Barbour MC, Chassagne F, Chivukula VK, Machicoane N, Kim LJ, Levitt MR, Aliseda A. The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 2. The haemodynamics of intracranial aneurysms treated with flow-diverting stents. JOURNAL OF FLUID MECHANICS 2021; 915:A124. [PMID: 34658417 PMCID: PMC8519511 DOI: 10.1017/jfm.2020.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The flow in a spherical cavity on a curved round pipe is a canonical flow that describes well the flow inside a sidewall aneurysm on an intracranial artery. Intracranial aneurysms are often treated with a flow-diverting stent (FDS), a low-porosity metal mesh that covers the entrance to the cavity, to reduce blood flow into the aneurysm sac and exclude it from mechanical stresses imposed by the blood flow. Successful treatment is highly dependent on the degree of reduction of flow inside the cavity, and the resulting altered fluid mechanics inside the aneurysm following treatment. Using stereoscopic particle image velocimetry, we characterize the fluid mechanics in a canonical configuration representative of an intracranial aneurysm treated with a FDS: a spherical cavity on the side of a curved round pipe covered with a metal mesh formed by an actual medical FDS. This porous mesh coverage is the focus of Part 2 of the paper, characterizing the effects of parent vessel Re, De and pulsatility, Wo, on the fluid dynamics, compared with the canonical configuration with no impediments to flow into the cavity that is described in Part 1 (Chassagne et al., J. Fluid Mech., vol. 915, 2021, A123). Coverage with a FDS markedly reduces the flow Re in the aneurysmal cavity, creating a viscous-dominated flow environment despite the parent vessel Re > 100. Under steady flow conditions, the topology that forms inside the cavity is shown to be a function of the parent vessel De. At low values of De, flow enters the cavity at the leading edge and remains attached to the wall before exiting at the trailing edge, a novel behaviour that was not found under any conditions of the high-Re, unimpeded cavity flow described in Part 1. Under these conditions, flow in the cavity co-rotates with the direction of the free-stream flow, similar to Stokes flow in a cavity. As De increases, the flow along the leading edge begins to separate, and the recirculation zone grows with increasing De, until, above De ≈ 180, the flow inside the cavity is fully recirculating, counter-rotating with respect to the free-stream flow. Under pulsatile flow conditions, the vortex inside the cavity progresses through the same cycle - switching from attached and co-rotating with the free-stream flow at the beginning of the cycle (low velocity and positive acceleration) to separated and counter-rotating as De reaches a critical value. The location of separation within the harmonic cycle is shown to be a function of both De and Wo. The values of aneurysmal cavity Re based on both the average velocity and the circulation inside the cavity are shown to increase with increasing values of De, while Wo is shown to have little influence on the time-averaged metrics. As De increases, the strength of the secondary flow in the parent vessel grows, due to the inertial instability in the curved pipe, and the flow rate entering the cavity increases. Thus, the effectiveness of FDS treatment to exclude the aneurysmal cavity from the haemodynamic stresses is compromised for aneurysms located on high-curvature arteries, i.e. vessels with high De, and this can be a fluid mechanics criterion to guide treatment selection.
Collapse
Affiliation(s)
- Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
| | - Fanette Chassagne
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
| | - Venkat K. Chivukula
- Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | - Louis J. Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Michael R. Levitt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
| |
Collapse
|
11
|
Nada A, Hassan MA, Fakhr MA, El-Wakad MTI. Studying the effect of stent thickness and porosity on post-stent implantation hemodynamics. J Med Eng Technol 2021; 45:408-416. [PMID: 33945392 DOI: 10.1080/03091902.2021.1912204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigates the effect of stent thickness and stent porosity which are important factors determining the post-treatment intra-aneurysmal hemodynamics. The study uses computational fluid dynamics (CFD) to estimate the hemodynamic behaviour: flow velocity, pressure distributions, time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), besides relative residence time (RRT) blood flow distribution in a proposed stent and three other commercially available stents. The hemodynamic behaviour is compared between four different cases. In each case, each stent has the specific thickness and porosity values. The results show that the velocity magnitude inside the sac declined in thinner stents and lower porosity stents, TAWSS on the aneurysmal wall declined linearly in lower porosity stents, OSI and RRT increased obviously in thicker stents and higher porosity stents. Finally, the results conclude that the stent with the lowest thickness and porosity has the best performance that leads to post-stent thrombus formation and healing. However, the proposed stent design, a more porous construct, has a higher RRT compared to the used commercially available stents, which helps promote the thrombus growth inside the aneurysm sac.
Collapse
Affiliation(s)
- Ayat Nada
- Department of Computers and Systems, Electronics Research Institute, Giza, Egypt
| | - Mohammed A Hassan
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt
| | - Mahmoud A Fakhr
- Department of Computers and Systems, Electronics Research Institute, Giza, Egypt
| | - Mohamed Tarek I El-Wakad
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Future University, Cairo, Egypt
| |
Collapse
|