1
|
Hwang S, Chang D, Saxena A, Oleen E, Lin Paing S, Atkins J, Lee H. Characterization of Human Shoulder Joint Stiffness Across 3D Arm Postures and Its Sex Differences. IEEE Trans Biomed Eng 2024; 71:2833-2841. [PMID: 38691430 DOI: 10.1109/tbme.2024.3395587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Understanding the characteristics of shoulder joint stiffness can offer insights into how the shoulder joint contributes to arm stability and assists in various arm postures and movements. This study aims to characterize posture-dependent shoulder stiffness in a three-dimensional (3D) space and investigate its potential sex differences. A multi-degree-of-freedom, parallel-actuated shoulder exoskeleton robot was used' to perturb the participant's shoulder joint and measure the resulting torque responses while participants relaxed their shoulder muscles. The group average results of 40 healthy individuals (20 males and 20 females) revealed that arm postures significantly affect shoulder stiffness, particularly in postures involving shoulder flexion/extension and horizontal flexion/extension. Shoulder stiffness consistently increased as the shoulder flexion angle decreased and the shoulder horizontal flexion/extension approached the limit of its range of motion. The comparative group results between males and females indicated that shoulder stiffness in males was greater than that in females across all 15 arm postures measured in this study. Even after normalizing the data by subject body mass, the female group showed significantly lower stiffness than the male group in 12 out of the 15 arm postures. The results highlight that 3D arm postures and sex significantly affect shoulder stiffness even under relaxed muscles. This study provides valuable foundations for future studies aimed at characterizing shoulder stiffness in the context of active muscles and dynamic movement tasks, evaluating changes in shoulder stiffness following neuromuscular injuries, and formulating rehabilitative training protocols for individuals suffering from shoulder problems.
Collapse
|
2
|
Baillargeon EM, Seitz AL, Ludvig D, Nicolozakes CP, Deshmukh SD, Perreault EJ. Older age is associated with decreased overall shoulder strength but not direction-specific differences in the three-dimensional feasible torque space. J Electromyogr Kinesiol 2024; 77:102889. [PMID: 38820987 PMCID: PMC11302932 DOI: 10.1016/j.jelekin.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Shoulder strength is reduced in older adults but has only been assessed in planar motions that do not reflect the diverse requirements of daily tasks. We quantified the impact of age on strength spanning the three degrees of freedom relevant to shoulder function, referred to as the feasible torque space. We hypothesized that the feasible torque space would differ with age and expected this age-effect to reflect direction-specific deficits. We measured strength in 32 directions to characterize the feasible torque space of the shoulder in participants without shoulder pain or tendinous pathology (n = 39, 19-86 years). We modeled the feasible torque space for each participant as an ellipsoid, computed the ellipsoid size and direction-specific metrics (ellipsoid position, orientation, and shape), and then tested the effect of age on each metric. Age was negatively associated with ellipsoid size (a measure of overall strength magnitude; -0.0033 ± 0.0007 (Nm/kg)/year, p < 0.0001). Contrary to our expectation, the effect of age on the direction-specific metrics did not reach statistical significance. The effect of age did not differ significantly between male and female participants. Three-dimensional strength measurements allowed us to constrain the direction of participants' maximum torque production and characterize the entire feasible torque space. Our findings support a generalized shoulder strengthening program to address age-related shoulder weakness in those without pain or pathology. Clinical exam findings of imbalanced weakness may suggest underlying pathology beyond an effect of age. Longitudinal studies are needed to determine the positive or negative impact of our results.
Collapse
Affiliation(s)
- Emma M Baillargeon
- Division of Geriatric Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Amee L Seitz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel Ludvig
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern, University, Evanston, IL, United States; Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Constantine P Nicolozakes
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern, University, Evanston, IL, United States; Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Swati D Deshmukh
- Department of Radiology, NYU Langone, New York City, NY, United States
| | - Eric J Perreault
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern, University, Evanston, IL, United States; Shirley Ryan AbilityLab, Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Nah MC, Krotov A, Russo M, Sternad D, Hogan N. Learning to manipulate a whip with simple primitive actions - A simulation study. iScience 2023; 26:107395. [PMID: 37554449 PMCID: PMC10405071 DOI: 10.1016/j.isci.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/26/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
This simulation study investigated whether a 4-degrees-of-freedom (DOF) arm could strike a target with a 50-DOF whip using a motion profile similar to discrete human movements. The interactive dynamics of the multi-joint arm was modeled as a constant joint-space mechanical impedance, with values derived from experimental measurement. Targets at various locations could be hit with a single maximally smooth motion in joint-space coordinates. The arm movements that hit the targets were identified with fewer than 250 iterations. The optimal actions were essentially planar arm motions in extrinsic task-space coordinates, predominantly oriented along the most compliant direction of both task-space and joint-space mechanical impedances. Of the optimal movement parameters, striking a target was most sensitive to movement duration. This result suggests that the elementary actions observed in human motor behavior may support efficient motor control in interaction with a dynamically complex object.
Collapse
Affiliation(s)
- Moses C. Nah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleksei Krotov
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Marta Russo
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Department of Neurology, Policlinico Tor Vergata and the Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Dagmar Sternad
- Department of Biology, Department of Electrical and Computer Engineering, Department of Physics, Institute of Experiential Robotics, Northeastern University, Boston, MA 02115, USA
| | - Neville Hogan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Mulla DM, Keir PJ. Neuromuscular control: from a biomechanist's perspective. Front Sports Act Living 2023; 5:1217009. [PMID: 37476161 PMCID: PMC10355330 DOI: 10.3389/fspor.2023.1217009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Understanding neural control of movement necessitates a collaborative approach between many disciplines, including biomechanics, neuroscience, and motor control. Biomechanics grounds us to the laws of physics that our musculoskeletal system must obey. Neuroscience reveals the inner workings of our nervous system that functions to control our body. Motor control investigates the coordinated motor behaviours we display when interacting with our environment. The combined efforts across the many disciplines aimed at understanding human movement has resulted in a rich and rapidly growing body of literature overflowing with theories, models, and experimental paradigms. As a result, gathering knowledge and drawing connections between the overlapping but seemingly disparate fields can be an overwhelming endeavour. This review paper evolved as a need for us to learn of the diverse perspectives underlying current understanding of neuromuscular control. The purpose of our review paper is to integrate ideas from biomechanics, neuroscience, and motor control to better understand how we voluntarily control our muscles. As biomechanists, we approach this paper starting from a biomechanical modelling framework. We first define the theoretical solutions (i.e., muscle activity patterns) that an individual could feasibly use to complete a motor task. The theoretical solutions will be compared to experimental findings and reveal that individuals display structured muscle activity patterns that do not span the entire theoretical solution space. Prevalent neuromuscular control theories will be discussed in length, highlighting optimality, probabilistic principles, and neuromechanical constraints, that may guide individuals to families of muscle activity solutions within what is theoretically possible. Our intention is for this paper to serve as a primer for the neuromuscular control scientific community by introducing and integrating many of the ideas common across disciplines today, as well as inspire future work to improve the representation of neural control in biomechanical models.
Collapse
|
5
|
Nicolozakes CP, Sohn MH, Baillargeon EM, Lipps DB, Perreault EJ. Stretch reflex gain scaling at the shoulder varies with synergistic muscle activity. J Neurophysiol 2022; 128:1244-1257. [PMID: 36224165 PMCID: PMC9662809 DOI: 10.1152/jn.00259.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique anatomy of the shoulder allows for expansive mobility but also sometimes precarious stability. It has long been suggested that stretch-sensitive reflexes contribute to maintaining joint stability through feedback control, but little is known about how stretch-sensitive reflexes are coordinated between the muscles of the shoulder. The purpose of this study was to investigate the coordination of stretch reflexes in shoulder muscles elicited by rotations of the glenohumeral joint. We hypothesized that stretch reflexes are sensitive to not only a given muscle's background activity but also the aggregate activity of all muscles crossing the shoulder based on the different groupings of muscles required to actuate the shoulder in three rotational degrees of freedom. We examined the relationship between a muscle's background activity and its reflex response in eight shoulder muscles by applying rotational perturbations while participants produced voluntary isometric torques. We found that this relationship, defined as gain scaling, differed at both short and long latencies based on the direction of voluntary torque generated by the participant. Therefore, gain scaling differed based on the aggregate of muscles that were active, not just the background activity in the muscle within which the reflex was measured. Across all muscles, the consideration of torque-dependent gain scaling improved model fits (ΔR2) by 0.17 ± 0.12. Modulation was most evident when volitional torques and perturbation directions were aligned along the same measurement axis, suggesting a functional role in resisting perturbations among synergists while maintaining task performance.NEW & NOTEWORTHY Careful coordination of muscles crossing the shoulder is needed to maintain the delicate balance between the joint's mobility and stability. We provide experimental evidence that stretch reflexes within shoulder muscles are modulated based on the aggregate activity of muscles crossing the joint, not just the activity of the muscle in which the reflex is elicited. Our results reflect coordination through neural coupling that may help maintain shoulder stability during encounters with environmental perturbations.
Collapse
Affiliation(s)
- Constantine P Nicolozakes
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - M Hongchul Sohn
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emma M Baillargeon
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David B Lipps
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Russo M, Lee J, Hogan N, Sternad D. Mechanical effects of canes on standing posture: beyond perceptual information. J Neuroeng Rehabil 2022; 19:97. [PMID: 36088387 PMCID: PMC9463794 DOI: 10.1186/s12984-022-01067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Numerous studies showed that postural balance improves through light touch on a stable surface highlighting the importance of haptic information, seemingly downplaying the mechanical contributions of the support. The present study examined the mechanical effects of canes for assisting balance in healthy individuals challenged by standing on a beam.
Methods
Sixteen participants supported themselves with two canes, one in each hand, and applied minimal, preferred, or maximum force onto the canes. They positioned the canes in the frontal plane or in a tripod configuration. Statistical analysis used a linear mixed model to evaluate the effects on the center of pressure and the center of mass.
Results
The canes significantly reduced the variability of the center of pressure and the center of mass to the same level as when standing on the ground. Increasing the exerted force beyond the preferred level yielded no further benefits, although in the preferred force condition, participants exploited the altered mechanics by resting their arms on the canes. The tripod configuration allowed for larger variability of the center of pressure in the task-irrelevant anterior–posterior dimension. High forces had a destabilizing effect on the canes: the displacement of the hand on the cane handle increased with the force.
Conclusions
Given this static instability, these results show that using canes can provide not only mechanical benefits but also challenges. From a control perspective, effort can be reduced by resting the arms on the canes and by channeling noise in the task-irrelevant dimensions. However, larger forces exerted onto the canes can also have destabilizing effects and the instability of the canes needs to be counteracted, possibly by arm and shoulder stiffness. Insights into the variety of mechanical effects is important for the design of canes and the instructions of how to use them.
Collapse
|
7
|
West AM, Hermus J, Huber ME, Maurice P, Sternad D, Hogan N. Dynamic Primitives Limit Human Force Regulation during Motion. IEEE Robot Autom Lett 2022; 7:2391-2398. [PMID: 35992731 PMCID: PMC9390969 DOI: 10.1109/lra.2022.3141778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans excel at physical interaction despite long feedback delays and low-bandwidth actuators. Yet little is known about how humans manage physical interaction. A quantitative understanding of how they do is critical for designing machines that can safely and effectively interact with humans, e.g. amputation prostheses, assistive exoskeletons, therapeutic rehabilitation robots, and physical human-robot collaboration. To facilitate applications, this understanding should be in the form of a simple mathematical model that not only describes humans' capabilities but also their limitations. In robotics, hybrid control allows simultaneous, independent control of both motion and force and it is often assumed that humans can modulate force independent of motion as well. This paper experimentally tested that assumption. Participants were asked to apply a constant 5N force on a robot manipulandum that moved along an elliptical path. After initial improvement, force errors quickly plateaued, despite practice and visual feedback. Within-trial analyses revealed that force errors varied with position on the ellipse, rejecting the hypothesis that humans have independent control of force and motion. The findings are consistent with a feed-forward motion command composed of two primitive oscillations acting through mechanical impedance to evoke force.
Collapse
Affiliation(s)
- A. Michael West
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - James Hermus
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Meghan E. Huber
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Pauline Maurice
- Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
| | - Dagmar Sternad
- Departments of Biology, Electrical and Computer Engineering, and Physics, and the Institute of Experiential Robotics, Northeastern University, Boston, MA 02115
| | - Neville Hogan
- Departments of Mechanical Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
8
|
Asgari M, Crouch DL. Estimating Human Upper Limb Impedance Parameters From a State-of-the-Art Computational Neuromusculoskeletal Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4820-4823. [PMID: 34892288 DOI: 10.1109/embc46164.2021.9630074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The human neuro-musculoskeletal system constantly deploys passive (e.g., posture adjustment) and active (e.g., muscle co-contraction) control strategies to regulate upper limb impedance and stability while interacting with the outside world. Upper limb impedance has been assessed through in vivo experiments and model-based simulations. The experiments are practically limited to small samples of able-bodied subjects and few limb postures, and model-based approaches have mostly used simplified upper limb models. Our objective was to develop and validate a computational approach to estimate upper limb impedance parameters - stiffness, viscosity, and inertia - at the endpoint (i.e., hand) using a neuromusculoskeletal model with realistic geometry. We added a planar manipulandum to an existing upper limb model implemented in OpenSim (version 3.3) and used contact modeling to attach the manipulandum's handle to the musculoskeletal model's hand. The hand was placed at several locations lateral to the shoulder joint along anterior/posterior and medial/lateral axes. At each location, during forward dynamics simulations, the manipulandum applied small perturbations to the hand in eight different directions. The spatial variation of the computed, model-based impedance parameters was similar to that of experimentally measured impedance parameters. However, the overall size of the stiffness and viscosity components was larger in the model than from experiments.Clinical Relevance- Computational modeling and simulations can estimate upper limb impedance properties to complement and overcome the limitations of experiments, especially for clinical populations. The computational approach could ultimately inform new interventions and devices to restore limb stability in people with shoulder disabilities.
Collapse
|
9
|
Nicolozakes CP, Ludvig D, Baillargeon EM, Perreault EJ, Seitz AL. Muscle Contraction Has a Reduced Effect on Increasing Glenohumeral Stability in the Apprehension Position. Med Sci Sports Exerc 2021; 53:2354-2362. [PMID: 34033623 PMCID: PMC8516675 DOI: 10.1249/mss.0000000000002708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Glenohumeral instability accounts for 23% of all shoulder injuries among collegiate athletes. The apprehension position-combined shoulder abduction and external rotation-commonly reproduces symptoms in athletes with instability. Rehabilitation aims to increase glenohumeral stability by strengthening functional positions. However, it is unclear how much glenohumeral stability increases with muscle contraction in the apprehension position. The purpose of this study was to determine whether the ability to increase translational glenohumeral stiffness, a quantitative measure of glenohumeral stability, with muscle contraction is reduced in the apprehension position. METHODS Seventeen asymptomatic adults participated. A precision-instrumented robotic system applied pseudorandom, anterior-posterior displacements to translate the humeral head within the glenoid fossa and measured the resultant forces as participants produced isometric shoulder torques. Measurements were made in neutral abduction (90° abduction/0° external rotation) and apprehension (90° abduction/90° external rotation) positions. Glenohumeral stiffness was estimated from the relationship between applied displacements and resultant forces. The ability to increase glenohumeral stiffness with increasing torque magnitude was compared between positions. RESULTS On average, participants increased glenohumeral stiffness from passive levels by 91% in the neutral abduction position and only 64% in the apprehension position while producing 10% of maximum torque production. The biggest decrease in the ability to modulate glenohumeral stiffness in the apprehension position was observed for torques generated in abduction (49% lower, P < 0.001) and horizontal abduction (25% lower, P < 0.001). CONCLUSION Our results demonstrate that individuals are less able to increase glenohumeral stiffness with muscle contraction in the apprehension position compared with a neutral shoulder position. These results may help explain why individuals with shoulder instability more frequently experience symptoms in the apprehension position compared with neutral shoulder positions.
Collapse
Affiliation(s)
- Constantine P. Nicolozakes
- Biomedical Engineering, Northwestern University, Evanston, IL
- Shirley Ryan AbilityLab, Chicago, IL
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel Ludvig
- Biomedical Engineering, Northwestern University, Evanston, IL
- Shirley Ryan AbilityLab, Chicago, IL
| | - Emma M. Baillargeon
- Biomedical Engineering, Northwestern University, Evanston, IL
- Shirley Ryan AbilityLab, Chicago, IL
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Eric J. Perreault
- Biomedical Engineering, Northwestern University, Evanston, IL
- Shirley Ryan AbilityLab, Chicago, IL
- Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Amee L. Seitz
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
10
|
|
11
|
Yahya YZ, Hunter IW, Besier T, Taberner A, Ruddy BP. Shoulder Joint Stiffness in a Functional Posture at Various Levels of Muscle Activation. IEEE Trans Biomed Eng 2021; 69:2192-2201. [DOI: 10.1109/tbme.2021.3138398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|