1
|
Chen X, Xia Y, Du W, Liu H, Hou R, Song Y, Xu W, Mao Y, Chen J. Contact Guidance Drives Upward Cellular Migration at the Mesoscopic Scale. Cell Mol Bioeng 2023; 16:205-218. [PMID: 37456789 PMCID: PMC10338420 DOI: 10.1007/s12195-023-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Cancer metastasis is associated with increased cancer incidence, recurrence, and mortality. The role of cell contact guidance behaviors in cancer metastasis has been recognized but has not been elucidated yet. Methods The contact guidance behavior of cancer cells in response to topographical constraints is identified using microgrooved substrates with varying dimensions at the mesoscopic scale. Then, the cell morphology is determined to quantitatively analyze the effects of substrate dimensions on cells contact guidance. Cell density and migrate velocity signatures within the cellular population are determined using time-lapse phase-contrast microscopy. The effect of soluble factors concentration is determined by culturing cells upside down. Then, the effect of cell-substrate interaction on cell migration is investigated using traction force microscopy. Results With increasing depth and decreasing groove width, cell elongation and alignment are enhanced, while cell spreading is inhibited. Moreover, cells display preferential distribution on the ridges, which is found to be more pronounced with increasing depth and groove width. Determinations of cell density and migration velocity signatures reveal that the preferential distribution on ridges is caused by cell upward migration. Combined with traction force measurement, we find that migration toward ridges is governed by different cell-substrate interactions between grooves and ridges caused by geometrical constraints. Interestingly, the upward migration of cells at the mesoscopic scale is driven by entropic maximization. Conclusions The mesoscopic cell contact guidance mechanism based on the entropic force driven theory provides basic support for the study of cell alignment and migration along healthy tissues with varying size, thereby aiding in the prediction of cancer metastasis. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00766-y.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Youjun Xia
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027 Anhui China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027 Anhui China
| | - Wenqiang Du
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Han Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Ran Hou
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Yiyu Song
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Wenhu Xu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Yuxin Mao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032 Anhui China
| | - Jianfeng Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031 Jiangxi China
| |
Collapse
|
2
|
Barrett AN, Huang Z, Aung S, Ho SSY, Roslan NS, Mahyuddin AP, Biswas A, Choolani M. Whole-Chromosome Karyotyping of Fetal Nucleated Red Blood Cells Using the Ion Proton Sequencing Platform. Genes (Basel) 2022; 13:genes13122257. [PMID: 36553524 PMCID: PMC9778445 DOI: 10.3390/genes13122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The current gold standard for the definitive diagnosis of fetal aneuploidy uses either chorionic villus sampling (CVS) or amniocentesis, both of which are which are invasive procedures carrying a procedure-related risk of miscarriage of up to 0.1-0.2%. Non-invasive prenatal diagnosis using fetal nucleated red blood cells (FNRBCs) isolated from maternal peripheral venous blood would remove this risk of miscarriage since these cells can be isolated from the mother's blood. We aimed to detect whole-chromosome aneuploidies from single nucleated fetal red blood cells using whole-genome amplification followed by massively parallel sequencing performed on a semiconductor sequencing platform. Twenty-six single cells were picked from the placental villi of twelve patients thought to have a normal fetal genotype and who were undergoing elective first-trimester surgical termination of pregnancy. Following karyotyping, it was subsequently found that two of these cases were also abnormal (one trisomy 15 and one mosaic genotype). One single cell from chorionic villus samples for two patients carrying a fetus with trisomy 21 and two single cells from women carrying fetuses with T18 were also picked. Pooled libraries were sequenced on the Ion Proton and data were analysed using Ion Reporter software. We correctly classified fetal genotype in all 24 normal cells, as well as the 2 T21 cells, the 2 T18 cells, and the two T15 cells. The two cells picked from the fetus with a mosaic result by CVS were classified as unaffected, suggesting that this was a case of confined placental mosaicism. Fetal sex was correctly assigned in all cases. We demonstrated that semiconductor sequencing using commercially available software for data analysis can be achieved for the non-invasive prenatal diagnosis of whole-chromosome aneuploidy with 100% accuracy.
Collapse
Affiliation(s)
- Angela N. Barrett
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Zhouwei Huang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Sarah Aung
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Sherry S. Y. Ho
- iGene Laboratory Pte Ltd., 1 Science Park Road #04-10, The Capricorn, Singapore 117528, Singapore
| | - Nur Syazana Roslan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Aniza P. Mahyuddin
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Department of Obstetrics & Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
3
|
Yang Y, Wang W, Weng J, Li H, Ma Y, Liu L, Ma W. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol 2022; 13:976289. [PMID: 36105800 PMCID: PMC9465335 DOI: 10.3389/fimmu.2022.976289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 12/05/2022] Open
Abstract
The HLA class Ib molecule is an alloantigen that causes transplant rejection on behalf of individual human and plays an important role in maternal-fetal immune tolerance. Early studies on HLA class Ib focused on the mechanism of HLA-G-induced immune escape, but in recent years, studies on the mechanism of HLA-G have deepened and gradually explored the mechanism of HLA-E and HLA-F, which are also HLA class Ib molecules. In the maternal-fetal interface, trophoblast cells express HLA class Ib molecules to protect the fetus from maternal immune cells by binding to inhibitory receptors of decidual immune cells (DICs) and shifting Th1/Th2 balance toward Th2 bias. Further studies on the molecular mechanism of HLA class Ib molecules provide a reference for its application in the field of clinical assisted reproduction.
Collapse
Affiliation(s)
- Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Huifang Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing Weng, ; Lingyan Liu,
| | - Wei Ma
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|