1
|
Friedman RM, Breuninger AS, Aronson MR, Brown EA, Patel N, Han L, Zur KB, Gottardi R. Age-related remodeling of the vocal fold extracellular matrix composition, structure, and biomechanics during tissue maturation. Connect Tissue Res 2024; 65:472-485. [PMID: 39665313 DOI: 10.1080/03008207.2024.2435364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE The vocal folds (VFs) are among the most mechanically active connective tissues, vibrating between 80 and 250 hz during speech. Overall VF function is determined by the composition and structure of their extracellular matrix (ECM). During tissue maturation, the VFs remodel from a monolayer of collagen fibers to a tri-layered structure, affecting tissue biomechanics. However, age-related VF ECM remodeling remains poorly understood since few studies have explored the proteins governing collagen fibrillogenesis or the non-collagenous ECM components critical for VF elasticity. MATERIALS AND METHODS VFs from immature, sexually mature, and skeletally mature rats were evaluated by endoscopy, histology, and electron microscopy for cellular and biochemical composition, ECM organization, and proteoglycan distribution. Nanoindentation modulus was determined by atomic force microscopy. RESULTS Collagen fiber abundance, maturity, and alignment are low in immature rats but show an age-dependent increase during tissue maturation. Lumican and fibromodulin, which regulate early-stage collagen fibril formation, are distributed throughout the VFs, and their abundance decreases with age. Decorin, involved in collagen organization, is concentrated just beneath the epithelium and increases with age. Elastin levels increase during tissue maturation, but hyaluronic acid abundance and distribution remain consistent with age. VF nanoindentation modulus trends toward a decrease with age. CONCLUSION This work identifies changes in VF ECM composition and organization during tissue maturation, focusing on proteins that regulate collagen fibrillogenesis, fiber assembly, and VF biomechanics. These findings may inform the development of pro-reparative therapies designed to influence collagen network structure and overall ECM dysregulation in a number of laryngeal pathologies.
Collapse
Affiliation(s)
- Ryan M Friedman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arielle S Breuninger
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew R Aronson
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth A Brown
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Karen B Zur
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Ri.MED Foundation, Palermo, Italy
| |
Collapse
|
2
|
Tian Z, Li Q, Wang X, Sun Z. The difference in extracellular matrix metabolism in women with and without pelvic organ prolapse: A systematic review and meta-analysis. BJOG 2024; 131:1029-1041. [PMID: 38291948 DOI: 10.1111/1471-0528.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Studies on the changes of extracellular matrix (ECM) in pelvic organ prolapse (POP) are still controversial. OBJECTIVE To identify the changes in the ECM in POP patients. SEARCH STRATEGY Comprehensive searching in Embase, PubMed, Web of Science and the Cochrane Library was carried out until 23 February 2023. SELECTION CRITERIA Studies comparing the protein levels of ECM-related components between women with and without POP. DATA COLLECTION AND ANALYSIS Quality and risk of bias were assessed using the Agency for Healthcare Research and Quality assessment. Indicators were pooled with random or fixed effect meta-analysis based on heterogeneity and sub-grouped analysed by the biopsy site. MAIN RESULTS Thirty cross-sectional studies were included, comprising 840 POP cases and 755 controls. Overall results showed that the expression of type III collagen (COLIII) and several matrix metalloproteinases (MMP-1, -2 and -9) were increased, whereas those of type I collagen (COLI), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) were decreased in patients with POP. Subgroup analysis showed that the expression of COLIII in the anterior vaginal wall (AVW) and COLIII, MMP-2 and -9 in the uterosacral ligament (USL) were consistent with the overall results. However, the expression of COLI and MMP-1 in the AVW showed no difference and the expression of COLI and MMP-1 in the USL is still controversial based on current studies. CONCLUSIONS Patients with POP have lower expression of COLI and TIMP-1 and higher expression of COLIII and MMPs compared with non-POP cases, but further studies are required to investigate in specified anatomical sites.
Collapse
Affiliation(s)
- Zhao Tian
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Centre for Obstetric & Gynaecological Diseases, Beijing, China
| | - Qiutong Li
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Centre for Obstetric & Gynaecological Diseases, Beijing, China
| | - Xiuqi Wang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Centre for Obstetric & Gynaecological Diseases, Beijing, China
| | - Zhijing Sun
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Centre for Obstetric & Gynaecological Diseases, Beijing, China
| |
Collapse
|
3
|
Maher S, Gerber D, Balog B, Wang L, Kuang M, Hanzlicek B, Malakalapalli T, Van Etten C, Khouri R, Damaser MS. Contribution of pudendal nerve injury to stress urinary incontinence in a male rat model. Sci Rep 2024; 14:7444. [PMID: 38548832 PMCID: PMC10978927 DOI: 10.1038/s41598-024-57493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Urinary incontinence is a common complication following radical prostatectomy, as the surgery disturbs critical anatomical structures. This study explored how pudendal nerve (PN) injury affects urinary continence in male rats. In an acute study, leak point pressure (LPP) and external urethral sphincter electromyography (EMG) were performed on six male rats with an intact urethra, the urethra exposed (UE), the PN exposed (NE), and after PN transection (PNT). In a chronic study, LPP and EMG were tested in 67 rats 4 days, 3 weeks, or 6 weeks after sham PN injury, PN crush (PNC), or PNT. Urethras were assessed histologically. Acute PNT caused a significant decrease in LPP and EMG amplitude and firing rate compared to other groups. PNC resulted in a significant reduction in LPP and EMG firing rate 4 days, 3 weeks, and 6 weeks later. EMG amplitude was also significantly reduced 4 days and 6 weeks after PNC. Neuromuscular junctions were less organized and less innervated after PNC or PNT at all timepoints compared to sham injured animals. Collagen infiltration was significantly increased after PNC and PNT compared to sham at all timepoints. This rat model could facilitate preclinical testing of neuroregenerative therapies for post-prostatectomy incontinence.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Daniel Gerber
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian Balog
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Lan Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Mei Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Brett Hanzlicek
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Tejasvini Malakalapalli
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Cassandra Van Etten
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA
| | - Roger Khouri
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH, 44195, USA.
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
4
|
Wu X, Liu X, Li T. Potential molecular targets for intervention in pelvic organ prolapse. Front Med (Lausanne) 2023; 10:1158907. [PMID: 37731721 PMCID: PMC10508236 DOI: 10.3389/fmed.2023.1158907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 09/22/2023] Open
Abstract
Pelvic organ prolapse (POP) is a concerning gynecological benign illness in middle-aged and senior women. Its etiology is complex, the incidence rate is high, symptoms are clinically subjective, and its influence tends to be polarized. At present, for those who need medical treatment, whether surgical or non-surgical, complications cannot be ignored, and treatment effect needs to be optimized. However, there is a lack of accurate molecular biological interventions for the prevention, diagnosis, progression delay, and treatment of POP. Here, we reviewed the current state of understanding of the molecular mechanisms and factors associated with POP etiology. These factors include cyclins, matrix metal peptidases/tissue inhibitors of metalloproteinases, microRNAs, homeobox A11, transforming growth factor β1, insulin-like growth factor 1, fibulin 5, lysyl oxidase-like 1, oxidative stress, inflammatory response, estrogen, and other potential biomarkers associated with POP. In addition, relevant molecular targets that may be used to intervene in POP are summarized. The aim of this review was to provide more information to identify accurate potential biomarkers and/or molecular targets for the prevention, diagnosis, progression delay, and treatment of POP, with the goal of improving medical treatment for patients at-risk for POP or having POP. Continued research is needed to identify additional details of currently accepted molecular mechanisms and to identify additional mechanisms that contribute to POP.
Collapse
Affiliation(s)
| | - Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | | |
Collapse
|
5
|
Dahal S, Dayal S, Androjna C, Peterson J, Ramamurthi A. Adult Mesenchymal Stem Cells and Derivatives in Improved Elastin Homeostasis in a Rat Model of Abdominal Aortic Aneurysms. Stem Cells Transl Med 2022; 11:850-860. [PMID: 35758561 PMCID: PMC9397656 DOI: 10.1093/stcltm/szac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are localized rupture-prone expansions of the aorta with limited reversibility that develop due to proteolysis of the elastic matrix. Natural regenerative repair of an elastic matrix is difficult due to the intrinsically poor elastogenicity of adult vascular smooth muscle cells (VSMCs). This justifies the need to provide external, pro-elastin regenerative- and anti-proteolytic stimuli to VSMCs in the AAA wall towards reinstating matrix structure in the aorta wall. Introducing alternative phenotypes of highly elastogenic and contractile cells into the AAA wall capable of providing such cues, proffers attractive prospects for AAA treatment. In this regard, we have previously demonstrated the superior elastogenicity of bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs (cBM-SMCs) and their ability to provide pro-elastogenic and anti-proteolytic stimuli to aneurysmal SMCs in vitro. However, the major issues associated with cell therapy, such as their natural ability to home into the AAA tissue, their in vivo biodistribution and retention in the AAA wall, and possible paracrine effects on AAA tissue repair processes in the event of localization in remote tissues remain uncertain. Therefore, in this study we focused on assessing the fate, safety, and AAA reparative effects of BM-MSC-derived cBM-SMCs in vivo. Our results indicate that the cBM-SMCs (a) possess natural homing abilities similar to the undifferentiated BM-MSCs, (b) exhibit higher retention upon localization in the aneurysmal aorta than BM-MSCs, (c) downregulate the expression of several inflammatory and pro-apoptotic cytokines that are upregulated in the AAA wall contributing to accelerated elastic matrix breakdown and suppression of elastic fiber neo-assembly, repair, and crosslinking, and (d) improve elastic matrix content and structure in the AAA wall toward slowing the growth of AAAs. Our study provides initial evidence of the in vivo elastic matrix reparative benefits of cBM-SMCs and their utility in cell therapy to reverse the pathophysiology of AAAs.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| | - Simran Dayal
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| | - Charlie Androjna
- Cleveland Clinic, Lerner Research Institute, Department of Biomedical Engineering, Cleveland, OH, USA
| | - John Peterson
- Cleveland Clinic, Lerner Research Institute, Department of Research Core Administration, Cleveland, OH, USA
| | - Anand Ramamurthi
- Lehigh University, Department of Bioengineering, Bethlehem, PA, USA
| |
Collapse
|
6
|
Allen-Brady K, Bortolini MAT, Damaser MS. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review. Int Urogynecol J 2022; 33:1765-1788. [PMID: 35088092 DOI: 10.1007/s00192-021-05066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development. METHODS We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years. RESULTS The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications. CONCLUSIONS Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Department of Internal Medicine, University of Utah, Williams Building 295 Chipeta Way, Salt Lake City, UT, USA.
| | - Maria A T Bortolini
- Department of Gynecology, Sector of Urogynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
7
|
Clark-Patterson GL, Roy S, Desrosiers L, Knoepp LR, Sen A, Miller KS. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci Rep 2021; 11:20956. [PMID: 34697337 PMCID: PMC8546087 DOI: 10.1038/s41598-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.
Collapse
Affiliation(s)
| | - Sambit Roy
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Leise R Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, New Orleans, 70121, USA
| | - Aritro Sen
- Department of Animal Sciences, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, 48824, USA
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
8
|
|