1
|
Brown NE, Ellerbe LR, Hollister SJ, Temenoff JS. Development and Characterization of Heparin-Containing Hydrogel/3D-Printed Scaffold Composites for Craniofacial Reconstruction. Ann Biomed Eng 2024; 52:2287-2307. [PMID: 38734845 DOI: 10.1007/s10439-024-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4-8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16-2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.
Collapse
Affiliation(s)
- Nettie E Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Lela R Ellerbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 313 Ferst Dr, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Ramaraju H, Landry AM, Sashidharan S, Shetty A, Crotts SJ, Maher KO, Goudy SL, Hollister SJ. Clinical grade manufacture of 3D printed patient specific biodegradable devices for pediatric airway support. Biomaterials 2022; 289:121702. [PMID: 36041362 DOI: 10.1016/j.biomaterials.2022.121702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 01/01/2023]
Abstract
Implantable patient-specific devices are the next frontier of personalized medicine, positioned to improve the quality of care across multiple clinical disciplines. Translation of patient-specific devices requires time- and cost-effective processes to design, verify and validate in adherence to FDA guidance for medical device manufacture. In this study, we present a generalized strategy for selective laser sintering (SLS) of patient-specific medical devices following the prescribed guidance for additive manufacturing of medical devices issued by the FDA in 2018. We contextualize this process for manufacturing an Airway Support Device, a life-saving tracheal and bronchial implant restoring airway patency for pediatric patients diagnosed with tracheobronchomalacia and exhibiting partial or complete airway collapse. The process covers image-based modeling, design inputs, design verification, material inputs and verification, device verification, and device validation, including clinical results. We demonstrate how design and material assessment lead to verified Airway Support Devices that achieve desired airway patency and reduction in required Positive End-Expiratory Pressure (PEEP) after patient implantation. We propose this process as a template for general quality control of patient-specific, 3D printed implants.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - April M Landry
- Department of Otolaryngology-Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Subhadra Sashidharan
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah J Crotts
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kevin O Maher
- Division of Cardiology, Pediatric Cardiology, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Goudy
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|