1
|
Pritchard NS, Brandt KM, Bullock GS, Kruse DW, Miles CM, Moore JB, Stitzel JD, Urban JE. The effect of safety modifications on head kinematics experienced during common skills in women's artistic gymnastics. J Sports Sci 2024; 42:1439-1452. [PMID: 39259820 DOI: 10.1080/02640414.2024.2394747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
The objective of this study was to evaluate the effect of skill modifications on head motion experienced during women's artistic gymnastics skills. Nine gymnasts (four beginner and five advanced) completed three trials of up to 24 skill progressions, each consisting of a skill and two progressive safety modifications. Gymnasts were instrumented with mouthpiece sensors embedded with an accelerometer and gyroscope collecting motion data at 200, 300, and 500 Hz during each skill performance. Peak-to-peak linear and rotational kinematics during contact phases and peak rotational kinematics during non-contact phases were computed. A mixed-effects model was used to compare differences in modification status nested within skill categories. Timer skills (i.e. drills that simulate performance of a gymnastics skill) resulted in the highest median ΔLA and ΔRA of all skill categories, and 132 skill performances exceeded 10 g ΔLA during a contact phase. Modifications were associated with significant reductions in head kinematics during contact phases of timers, floor skills, bar releases, and vault skills. Gymnasts can be exposed to direct and indirect head accelerations at magnitudes consistent with other youth contact sports, and common safety modifications may be effective at reducing head motion during contact and non-contact phases of gymnastics skills.
Collapse
Affiliation(s)
- N Stewart Pritchard
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, USA
| | - Kambrie M Brandt
- Department of Biological, Biomedical, and Chemical Engineering, University of Missouri, Columbia, USA
| | - Garrett S Bullock
- Department of Orthopaedic Surgery & Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, USA
| | - David W Kruse
- Orthopaedic Specialty Institute, Primary Care Sports Medicine, Irvine, CA, USA
| | - Christopher M Miles
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, USA
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Justin B Moore
- Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, USA
| | - Jillian E Urban
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, USA
- School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Winston-Salem, USA
| |
Collapse
|
2
|
Stilwell G, Stitt D, Alexander K, Draper N, Kabaliuk N. The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model. Ann Biomed Eng 2024; 52:2234-2246. [PMID: 38739210 PMCID: PMC11247052 DOI: 10.1007/s10439-024-03525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
In contact sports such as rugby, players are at risk of sustaining traumatic brain injuries (TBI) due to high-intensity head impacts that generate high linear and rotational accelerations of the head. Previous studies have established a clear link between high-intensity head impacts and brain strains that result in concussions. This study presents a novel approach to investigating the effect of a range of laboratory controlled drop test parameters on regional peak and mean maximum principal strain (MPS) predictions within the brain using a trained convolutional neural network (CNN). The CNN is publicly available at https://github.com/Jilab-biomechanics/CNN-brain-strains . The results of this study corroborate previous findings that impacts to the side of the head result in significantly higher regional MPS than forehead impacts. Forehead impacts tend to result in the lowest region-averaged MPS values for impacts where the surface angle was at 0° and 45°, while side impacts tend to result in higher regional peak and mean MPS. The absence of a neck in drop tests resulted in lower regional peak and mean MPS values. The results indicated that the relationship between drop test parameters and resulting regional peak and mean MPS predictions is complex. The study's findings offer valuable insights into how deep learning models can be used to provide more detailed insights into how drop test conditions impact regional MPS. The novel approach used in this paper to predict brain strains can be applied in the development of better methods to reduce the brain strain resulting from head accelerations such as protective sports headgear.
Collapse
Affiliation(s)
- George Stilwell
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Danyon Stitt
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Keith Alexander
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Nick Draper
- Faculty of Health, University of Canterbury, Christchurch, 8041, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
3
|
Wu Y, Shen Y, Tian Y, Chen Q, Sun L. Quantifying the effects of ice hockey upper body pads on mobility and comfort. iScience 2024; 27:108606. [PMID: 38169817 PMCID: PMC10758976 DOI: 10.1016/j.isci.2023.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Ice hockey is a high-intensity sport in which pads such as shoulder and elbow pads (S/EPs) are necessary to help players avoid injury. However, they can also affect mobility and comfort, thereby affecting players' on-ice performance. We aimed to quantify the effects of S/EPs on mobility and comfort by comparing the range of motion (ROM) of nine elite college-level ice hockey players performing static (nine single-DOF upper-body movements) and dynamic (wrist and slap shots) tasks under six pad conditions (no S/EPs and five types of S/EPs). We also analyzed the relationship between ROM and subjective comfort to provide an objective comfort evaluation of hockey pads. Five types of S/EPs restrict ROM at different levels, imposing additional mobility restrictions. We found significant differences among the five types and a high correlation between comfort and ROM. We conducted a comprehensive evaluation of the impact of ice hockey pads on mobility and comfort.
Collapse
Affiliation(s)
- Yiwei Wu
- AI Sports Engineering Lab, School of Sports Engineering, Beijing Sport University, Beijing 100084, China
| | - Yanfei Shen
- AI Sports Engineering Lab, School of Sports Engineering, Beijing Sport University, Beijing 100084, China
| | - Yinsheng Tian
- AI Sports Engineering Lab, School of Sports Engineering, Beijing Sport University, Beijing 100084, China
| | - Qi Chen
- Sports Engineering Research Center, China Institute of Sport Science, Beijing 100061, China
| | - Lixin Sun
- AI Sports Engineering Lab, School of Sports Engineering, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
4
|
Zuidema TR, Bazarian JJ, Kercher KA, Mannix R, Kraft RH, Newman SD, Ejima K, Rettke DJ, Macy JT, Steinfeldt JA, Kawata K. Longitudinal Associations of Clinical and Biochemical Head Injury Biomarkers With Head Impact Exposure in Adolescent Football Players. JAMA Netw Open 2023; 6:e2316601. [PMID: 37252737 PMCID: PMC10230318 DOI: 10.1001/jamanetworkopen.2023.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Importance Consequences of subconcussive head impacts have been recognized, yet most studies to date have included small samples from a single site, used a unimodal approach, and lacked repeated testing. Objective To examine time-course changes in clinical (near point of convergence [NPC]) and brain-injury blood biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], and neurofilament light [NF-L]) in adolescent football players and to test whether changes in the outcomes were associated with playing position, impact kinematics, and/or brain tissue strain. Design, Setting, and Participants This multisite, prospective cohort study included male high school football players aged 13 to 18 years at 4 high schools in the Midwest during the 2021 high school football season (preseason [July] and August 2 to November 19). Exposure A single football season. Main Outcomes and Measures The main outcomes were NPC (a clinical oculomotor test) and serum levels of GFAP, UCH-L1, and NF-L. Participants' head impact exposure (frequency and peak linear and rotational accelerations) was tracked using instrumented mouthguards, and maximum principal strain was computed to reflect brain tissue strain. Players' neurological function was assessed at 5 time points (preseason, post-training camp, 2 in season, and postseason). Results Ninety-nine male players contributed to the time-course analysis (mean [SD] age, 15.8 [1.1] years), but data from 6 players (6.1%) were excluded from the association analysis due to issues related to mouthguards. Thus, 93 players yielded 9498 head impacts in a season (mean [SD], 102 [113] impacts per player). There were time-course elevations in NPC and GFAP, UCH-L1, and NF-L levels. Compared with baseline, the NPC exhibited a significant elevation over time and peaked at postseason (2.21 cm; 95% CI, 1.80-2.63 cm; P < .001). Levels of GFAP and UCH-L1 increased by 25.6 pg/mL (95% CI, 17.6-33.6 pg/mL; P < .001) and 188.5 pg/mL (95% CI, 145.6-231.4 pg/mL; P < .001), respectively, later in the season. Levels of NF-L were elevated after the training camp (0.78 pg/mL; 95% CI, 0.14-1.41 pg/mL; P = .011) and midseason (0.55 pg/mL; 95% CI, 0.13-0.99 pg/mL; P = .006) but normalized by the end of the season. Changes in UCH-L1 levels were associated with maximum principal strain later in the season (0.052 pg/mL; 95% CI, 0.015-0.088 pg/mL; P = .007) and postseason (0.069 pg/mL; 95% CI, 0.031-0.106 pg/mL; P < .001). Conclusions and Relevance The study data suggest that adolescent football players exhibited impairments in oculomotor function and elevations in blood biomarker levels associated with astrocyte activation and neuronal injury throughout a season. Several years of follow-up are needed to examine the long-term effects of subconcussive head impacts in adolescent football players.
Collapse
Affiliation(s)
- Taylor R. Zuidema
- Department of Kinesiology, Indiana University School of Public Health–Bloomington
- Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kyle A. Kercher
- Department of Kinesiology, Indiana University School of Public Health–Bloomington
| | - Rebekah Mannix
- Department of Medicine, Division of Emergency Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Reuben H. Kraft
- Department of Mechanical and Biomedical Engineering, Pennsylvania State University, University Park
- Institute of Computational and Data Sciences, Pennsylvania State University, University Park
| | | | - Keisuke Ejima
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devin J. Rettke
- Department of Kinesiology, Indiana University School of Public Health–Bloomington
| | - Jonathan T. Macy
- Department of Applied Health Science, Indiana University School of Public Health–Bloomington
| | - Jesse A. Steinfeldt
- Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health–Bloomington
- Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington
| |
Collapse
|
5
|
Duma BG, Begonia MT, Miller B, Rowson S, Duma LA, Duma SM. Whitewater Helmet STAR: Evaluation of the Biomechanical Performance and Risk of Head Injury for Whitewater Helmets. Ann Biomed Eng 2022; 50:1520-1533. [PMID: 36207617 DOI: 10.1007/s10439-022-03090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
Abstract
More than six million people participate in whitewater kayaking and rafting in the United States each year. Unfortunately, with these six million whitewater participants come 50 deaths annually, making it one of the highest fatality rates of all sports. As the popularity in whitewater activities grows, the number of injuries, including concussions, also increases. The objective of this study was to create a new rating system for whitewater helmets by evaluating the biomechanical performance and risk of head injury of whitewater helmets using the Summation of Tests for the Analysis of Risk (STAR) system. All watersport helmets that passed the EN: 1385: 2012 standard and that were clearly marketed for whitewater use were selected for this study. Two samples of each helmet model were tested on a custom pendulum impactor under conditions known to be associated with the highest risk of head injury and death. A 50th percentile male NOCSAE headform instrumented with three linear accelerometers and a triaxial angular rate sensor coupled with a Hybrid III 50th percentile neck were used for data collection. A total of 126 tests were performed using six different configurations. These included impacts to the front, side, and rear using two speeds of 3.1 and 4.9 m/s that modeled whitewater river flow rates. Each helmet's STAR score was calculated using the combination of exposure and injury risk that was determined from the linear and rotational head accelerations. The resulting head impact accelerations predicted a very high risk of concussion for all impact locations at the 4.9 m/s speed. The STAR score varied between helmets indicating that some helmets provide better protection than others. Overall, these results show a clear need for improvement in whitewater helmets, and the methodologies developed in this research project should provide manufacturers a design tool for improving these products.
Collapse
Affiliation(s)
- Brock G Duma
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA.
| | - Mark T Begonia
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA
| | - Barry Miller
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA
| | - Steve Rowson
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA
| | - Lauren A Duma
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA
| | - Stefan M Duma
- Virginia Tech Helmet Lab, Virginia Tech, 120 Kelly Hall, Blacksburg, VA, 24060, USA
| |
Collapse
|
6
|
Stitt D, Kabaliuk N, Alexander K, Draper N. Drop Test Kinematics Using Varied Impact Surfaces and Head/Neck Configurations for Rugby Headgear Testing. Ann Biomed Eng 2022; 50:1633-1647. [PMID: 36002780 DOI: 10.1007/s10439-022-03045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
World Rugby employs a specific drop test method to evaluate headgear performance, but almost all researchers use a different variation of this method. The aim of this study was, therefore, to quantify the differences between variations of the drop testing method using a Hybrid III headform and neck in the following impact setups: (1) headform only, with a flat steel impact surface, approximating the World Rugby method, (2 and 3) headform with and without a neck, respectively, onto a flat MEP pad impact surface, and (4) headform and neck, dropped onto an angled MEP pad impact surface. Each variation was subject to drop heights of 75-600 mm across three orientations (forehead, side, and rear boss). Comparisons were limited to the linear and rotational acceleration and rotational velocity for simplicity. Substantial differences in kinematic profile shape manifested between all drop test variations. Peak accelerations varied highly between variations, but the peak rotational velocities did not. Drop test variation also significantly changed the ratios of the peak kinematics to each other. This information can be compared to kinematic data from field head impacts and could inform more realistic impact testing methods for assessing headgear.
Collapse
Affiliation(s)
- Danyon Stitt
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand. .,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand.
| | - Keith Alexander
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| | - Nick Draper
- Faculty of Health, University of Canterbury, Christchurch, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Duma BG. Special Issue: Concussions. Ann Biomed Eng 2022. [PMID: 35821165 DOI: 10.1007/s10439-022-03009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Injury Metrics for Assessing the Risk of Acute Subdural Hematoma in Traumatic Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413296. [PMID: 34948905 PMCID: PMC8702226 DOI: 10.3390/ijerph182413296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes is a major public health problem. ASDHs are usually produced by loss of structural integrity of one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore, to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs are subjected during a potentially traumatic event (such as a traffic accident or a fall from height). Recently, new studies on CBVs have been published allowing much more accurate prediction of the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage metrics, which make more accurate predictions about the probability of occurrence of ASDH in road crashes. This would allow a better assessement of the effects of passive safety countermeasures and, consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics are based on partially obsolete data and measurements of the mechanical behavior of CBVs that have not been confirmed by subsequent studies. This paper proposes a revision of some existing metrics and constructs a new metric based on more accurate recent data on the mechanical failure of human CBVs.
Collapse
|