1
|
Canciani B, Rossi N, Arrigoni E, Giorgino R, Sergio M, Aidos L, Di Giancamillo M, Herrera Millar VR, Peretti GM, Di Giancamillo A, Mangiavini L. In Vitro Characterization of Human Cell Sources in Collagen Type I Gel Scaffold for Meniscus Tissue Engineering. Gels 2024; 10:767. [PMID: 39727525 DOI: 10.3390/gels10120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs) were analyzed. Two different fibro-chondrogenic media, M1 and M2, were tested, and qualitative and quantitative analyses were performed. Significant increases in glycosaminoglycans (GAGs) production and in fibro-cartilaginous marker expression were observed in MSCs in the presence of M1 medium. In addition, both ASCs and BMSCs cultured in M1 medium were used in association with the collagen hydrogel (MSCs-SCF) for the development of an in vitro meniscal-like tissue. Significant up-regulation in GAGs production and in the expression of aggrecan, collagen type I, and collagen type II was observed in BMSCs-SCF. This study improves knowledge of the potential of combining undifferentiated MSCs with a collagen gel as a new tissue engineering strategy for meniscus repair.
Collapse
Affiliation(s)
| | - Nicolò Rossi
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| | - Elena Arrigoni
- Department of Biomedical Sciences for Health, University of Milan, 20141 Milan, Italy
| | - Riccardo Giorgino
- Residency Program in Orthopedics and Traumatology, University of Milan, 20141 Milan, Italy
| | - Mirko Sergio
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Mauro Di Giancamillo
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | | - Giuseppe M Peretti
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20141 Milan, Italy
| | | | - Laura Mangiavini
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20141 Milan, Italy
| |
Collapse
|
2
|
Pham TB, Sah RL, Masuda K, Watson D. Human Septal Cartilage Tissue Engineering: Current Methodologies and Future Directions. Bioengineering (Basel) 2024; 11:1123. [PMID: 39593783 PMCID: PMC11592323 DOI: 10.3390/bioengineering11111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Nasal septal cartilage tissue engineering is a promising and dynamic field with the potential to provide surgical options for patients with complex reconstruction needs and mitigate the risks incurred by other tissue sources. Developments in cell source selection, cell expansion, scaffold creation, and three-dimensional (3D) bioprinting have advanced the field in recent years. The usage of medicinal signaling cells and nasal chondroprogenitor cells can enhance chondrocyte proliferation, stimulate chondrocyte growth, and limit chondrocyte dedifferentiate. New scaffolds combined with recent innovations in 3D bioprinting have allowed for the creation of more durable and customizable constructs. Future developments may increase technical accessibility and manufacturability, and lower costs, to help incorporate these methods into pre-clinical studies and clinical applications of septal cartilage tissue engineering.
Collapse
Affiliation(s)
- Tammy B. Pham
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA 92093, USA;
| | - Robert L. Sah
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego Jacobs School of Engineering, La Jolla, CA 92093, USA;
| | - Koichi Masuda
- Department of Orthopedic Surgery, UC San Diego Health, La Jolla, CA 92093, USA;
| | - Deborah Watson
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA 92093, USA;
| |
Collapse
|
3
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Zhou J, Li Q, Tian Z, Yao Q, Zhang M. Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering. Mater Today Bio 2023; 23:100870. [PMID: 38179226 PMCID: PMC10765242 DOI: 10.1016/j.mtbio.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Human cartilage tissue can be categorized into three types: hyaline cartilage, elastic cartilage and fibrocartilage. Each type of cartilage tissue possesses unique properties and functions, which presents a significant challenge for the regeneration and repair of damaged tissue. Bionics is a discipline in which humans study and imitate nature. A bionic strategy based on comprehensive knowledge of the anatomy and histology of human cartilage is expected to contribute to fundamental study of core elements of tissue repair. Moreover, as a novel tissue-engineered technology, 3D bioprinting has the distinctive advantage of the rapid and precise construction of targeted models. Thus, by selecting suitable materials, cells and cytokines, and by leveraging advanced printing technology and bionic concepts, it becomes possible to simultaneously realize multiple beneficial properties and achieve improved tissue repair. This article provides an overview of key elements involved in the combination of 3D bioprinting and bionic strategies, with a particular focus on recent advances in mimicking different types of cartilage tissue.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Qi Li
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Zhuang Tian
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Qi Yao
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| |
Collapse
|
6
|
Jarecki J, Waśko MK, Widuchowski W, Tomczyk-Warunek A, Wójciak M, Sowa I, Blicharski T. Knee Cartilage Lesion Management-Current Trends in Clinical Practice. J Clin Med 2023; 12:6434. [PMID: 37892577 PMCID: PMC10607427 DOI: 10.3390/jcm12206434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Many patients, particularly those aged above 40, experience knee joint pain, which hampers both sports activities and daily living. Treating isolated chondral and osteochondral defects in the knee poses a significant clinical challenge, particularly in younger patients who are not typically recommended partial or total knee arthroplasty as alternatives. Several surgical approaches have been developed to address focal cartilage defects. The treatment strategies are characterized as palliation (e.g., chondroplasty and debridement), repair (e.g., drilling and microfracture), or restoration (e.g., autologous chondrocyte implantation, osteochondral autograft, and osteochondral allograft). This review offers an overview of the commonly employed clinical methods for treating articular cartilage defects, with a specific focus on the clinical trials conducted in the last decade. Our study reveals that, currently, no single technology fully meets the essential requirements for effective cartilage healing while remaining easily applicable during surgical procedures. Nevertheless, numerous methods are available, and the choice of treatment should consider factors such as the location and size of the cartilage lesion, patient preferences, and whether it is chondral or osteochondral in nature. Promising directions for the future include tissue engineering, stem cell therapies, and the development of pre-formed scaffolds from hyaline cartilage, offering hope for improved outcomes.
Collapse
Affiliation(s)
- Jaromir Jarecki
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Marcin Krzysztof Waśko
- Department of Radiology and Imaging, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland;
| | - Wojciech Widuchowski
- Department of Physiotherapy, The College of Physiotherapy, 50-038 Wrocław, Poland;
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|