Chaudhry MS, Czekanski A. Surface slicing and toolpath planning for
in-situbioprinting of skin implants.
Biofabrication 2024;
16:025030. [PMID:
38447215 DOI:
10.1088/1758-5090/ad30c4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Bioprinting has emerged as a successful method for fabricating engineered tissue implants, offering great potential for wound healing applications. This study focuses on an advanced surface-based slicing approach aimed at designing a skin implant specifically forin-situbioprinting. The slicing step plays a crucial role in determining the layering arrangement of the tissue during printing. By utilizing surface slicing, a significant shift from planar fabrication methods is achieved. The developed methodology involves the utilization of a customized robotic printer to deliver biomaterials. A multilayer slicing and toolpath generation procedure is presented, enabling the fabrication of skin implants that incorporate the epidermal, dermal, and hypodermal layers. One notable advantage of using the approximate representation of the native wound site surface as the slicing surface is the avoidance of planar printing effects such as staircasing. This surface slicing method allows for the design of non-planar and ultra-thin skin implants, ensuring a higher degree of geometric match between the implant and the wound interface. Furthermore, the proposed methodology demonstrates superior surface quality of thein-situbio-printed implant on a hand model, validating its ability to create toolpaths on implants with complex surfaces.
Collapse