1
|
Liu Z, Chen X, Wen Y, Bao C, Liu C, Cao S, Yan H, Lin Q. Chemical modification of alginate with tosylmethyl isocyanide, propionaldehyde and octylamine via the Ugi reaction for hydrophobic drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Chen X, Zhu Q, Liu C, Li D, Yan H, Lin Q. Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance. Polymers (Basel) 2021; 13:3351. [PMID: 34641167 PMCID: PMC8512272 DOI: 10.3390/polym13193351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately -44.8~-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dongze Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Chen X, Zhu Q, Li Z, Yan H, Lin Q. The Molecular Structure and Self-Assembly Behavior of Reductive Amination of Oxidized Alginate Derivative for Hydrophobic Drug Delivery. Molecules 2021; 26:5821. [PMID: 34641365 PMCID: PMC8510318 DOI: 10.3390/molecules26195821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
On account of the rigid structure of alginate chains, the oxidation-reductive amination reaction was performed to synthesize the reductive amination of oxidized alginate derivative (RAOA) that was systematically characterized for the development of pharmaceutical formulations. The molecular structure and self-assembly behavior of the resultant RAOA was evaluated by an FT-IR spectrometer, a 1H NMR spectrometer, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), a fluorescence spectrophotometer, rheology, a transmission electron microscope (TEM) and dynamic light scattering (DLS). In addition, the loading and in vitro release of ibuprofen for the RAOA microcapsules prepared by the high-speed shearing method, and the cytotoxicity of the RAOA microcapsules against the murine macrophage RAW264.7 cell were also studied. The experimental results indicated that the hydrophobic octylamine was successfully grafted onto the alginate backbone through the oxidation-reductive amination reaction, which destroyed the intramolecular hydrogen bond of the raw sodium alginate (SA), thereby enhancing its molecular flexibility to achieve the self-assembly performance of RAOA. Consequently, the synthesized RAOA displayed good amphiphilic properties with a critical aggregation concentration (CAC) of 0.43 g/L in NaCl solution, which was significantly lower than that of SA, and formed regular self-assembled micelles with an average hydrodynamic diameter of 277 nm (PDI = 0.19) and a zeta potential of about -69.8 mV. Meanwhile, the drug-loaded RAOA microcapsules had a relatively high encapsulation efficiency (EE) of 87.6 % and good sustained-release properties in comparison to the drug-loaded SA aggregates, indicating the good affinity of RAOA to hydrophobic ibuprofen. The swelling and degradation of RAOA microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Moreover, it also displayed low cytotoxicity against the RAW264.7 cell, similar to the SA aggregates. In view of the excellent advantages of RAOA, it is expected to become the ideal candidate for hydrophobic drug delivery in the biomedical field.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zhengyue Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (Q.Z.); (Z.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Synthesis and self-assembly behavior of decyl alginate ester derivative via bimolecular nucleophilic substitution reaction. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Blanco I, Cicala G, Tosto C, Bottino FA. Kinetic Study of the Thermal and Thermo-Oxidative Degradations of Polystyrene Reinforced with Multiple-Cages POSS. Polymers (Basel) 2020; 12:E2742. [PMID: 33227908 PMCID: PMC7699152 DOI: 10.3390/polym12112742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022] Open
Abstract
A comprehensive kinetics degradation study is carried out on novel multiple cages polyhedral oligomeric silsesquioxane (POSS)/polystyrene (PS) composites at 5% (w/w) of POSS to assess their thermal behavior with respect to the control PS and other similar POSS/PS systems studied in the past. The composites are synthesized by in situ polymerization of styrene in the presence of POSSs and characterized by 1H-NMR. The characteristics of thermal parameters are determined using kinetics literature methods, such as those developed by Kissinger and Flynn, Wall, and Ozawa (FWO), and discussed and compared with each other and with those obtained in the past for similar POSS/PS composites. A good improvement in the thermal stability with respect to neat polymer is found, but not with respect to those obtained in the past for polystyrene reinforced with single- or double-POSS cages. This behavior is attributed to the greater steric hindrance of the three-cages POSS compared with those of single- or double-cage POSS molecules.
Collapse
Affiliation(s)
- Ignazio Blanco
- Department of Civil Engineering and Architecture, University of Catania an UdR-Catania Consorzio INSTM, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.T.)
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania an UdR-Catania Consorzio INSTM, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.T.)
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania an UdR-Catania Consorzio INSTM, Viale Andrea Doria 6, 95125 Catania, Italy; (G.C.); (C.T.)
| | | |
Collapse
|
6
|
Adsorption and Separation of Crystal Violet, Cerium(III) and Lead(II) by Means of a Multi-Step Strategy Based on K10-Montmorillonite. MINERALS 2020. [DOI: 10.3390/min10050466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multi-step procedure, based on the employment of K10-Montmorillonite, is proposed for the selective removal of metal ions and dyes from a multicomponent solution. The objective is twofold: decontaminate the effluents and separate and recover the valuable byproducts present in wastewaters. Three common contaminants, i.e., crystal violet dye (CV), Ce(III) and Pb(II) were chosen as “model” pollutants. The main factors affecting the pollutants’ sorption were investigated. The experimental data were correlated with adsorption isotherms and kinetic models to obtain a deeper insight into the adsorption processes. The affinity of the clay toward the pollutants is favored by an increasing pH and follows the order CV > Pb(II) > Ce(III). Whereas Ce(III) metal ions do not adsorb onto clay under strongly acidic conditions, both Pb(II) and CV can adsorb under all the investigated pH conditions. The analysis of isotherms and kinetic profiles revealed that CV adsorbs onto clay through a mechanism consisting of two parallel processes, namely cation exchange on the external mineral surface and in the interlayer and surface complexation at the edge sites, while metal ion uptake is due solely to cation exchange processes involving mineral surfaces. The time required for the complete removal of pollutants follows the order CV > Ce(III) >> Pb(II). The possibility to modulate the adsorption features by changing experimental conditions was successfully employed to propose the best strategy for the progressive removal of different components from aqueous solutions.
Collapse
|
7
|
Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity. Colloids Surf B Biointerfaces 2020; 188:110791. [DOI: 10.1016/j.colsurfb.2020.110791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
|
8
|
Yan H, Chen X, Bao C, Yi J, Lei M, Ke C, Zhang W, Lin Q. Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloids Surf B Biointerfaces 2020; 191:110983. [PMID: 32208326 DOI: 10.1016/j.colsurfb.2020.110983] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The research goal of the present study was to develop a carrier for loading and controlled -release of the hydrophobic drug with the combined use of organo-montmorillonite (OMMT) and alginate. The OMMT was synthesized through the intercalation modification of sodium montmorillonite (Na-MMT) with cationic cetyltrimethylammonium bromide (CTAB), nonionic nonylphenol polyoxyethylene ether (NPE) and the mixture of them via simple and convenient wet ball-milling method. Furthermore, the organo-montmorillonite/alginate (OMMT/Alg) composite hydrogel beads with slow and controlled release properties were constructed by using alginate as a coating material under the exogenous cross-linking of calcium ions. The physical and chemical properties of OMMT were comparatively evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analyzer (TGA), BET-specific surface area measurements, and drug adsorption experiments. Experimental results showed that the presence of CTAB was able to facilitate the intercalation of CTAB/NPE into Na-MMT through the cation exchange reaction. And the cationic CTAB and nonionic NPE were adsorbed or intercalated into the MMT lamellar structure through the wet ball-milling process, which could change the hydrophilic nature of Na-MMT and improve its affinity to the hydrophobic drug molecules. In addition, the OMMT/Alg composite hydrogel beads displayed superior sustained-release properties than Na-MMT/Alg, mainly ascribed to the good affinity of OMMT to hydrophobic drug that retarded the drug diffusion. In particular, CTA/NPE-MMT/Alg with the highest loading capacity (LC) and encapsulation efficiency (EE) revealed the optimal controlled performance for the release of hydrophobic ibuprofen. The release followed the Korsmeyer-Peppas model suggested non-Fickian diffusion release mechanism. Based on the high drug loading capacity and excellent controlled drug release properties, the CTA/NPE-MMT/Alg incorporating hydrophobic drugs into hydrophilic matrices could be a highly promising material for use in hydrophobic drug delivery.
Collapse
Affiliation(s)
- Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Chaoling Bao
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Jiling Yi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China
| | - Mengyuan Lei
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Chaoran Ke
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Wei Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, PR China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| |
Collapse
|
9
|
Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F, Sciascia L. Simultaneous Removal and Recovery of Metal Ions and Dyes from Wastewater through Montmorillonite Clay Mineral. NANOMATERIALS 2019; 9:nano9121699. [PMID: 31795123 PMCID: PMC6955944 DOI: 10.3390/nano9121699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The main objective of this work was to evaluate the potential of Montmorillonite nanoclay (Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) of two classes of pollutants: metal ions and dyes. The attention was focused on two "model" pollutants: Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in wastewaters of various origins. These characteristics, together with their effect on human health, make them ideal for studies on water remediation. Moreover, when separated from wastewater, they can be recycled individually in industrial production with no or simple treatment. Clay/pollutant hybrids were prepared under different pH conditions and characterized through the construction of the adsorption isotherms and powder X-ray diffraction. The adsorption behavior of the two contaminants was revealed to be significantly different: the Langmuir model reproduces the adsorption isotherm of Ce(III) better, thus indicating that the clay offers a unique adsorption site to the metal ions, while the Freundlich model proved to be the most reliable for the uptake of CV which implies heterogeneity of adsorption sites. Moreover, metal ions do not adsorb at all under acidic conditions, whereas the dye is able to adsorb under all the investigated conditions. The possibility to modulate the adsorption features by simply changing the pH conditions was successfully employed to develop an efficient protocol for the removal and separation of the different components from aqueous solutions mimicking wastewaters.
Collapse
Affiliation(s)
- Filippo Parisi
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
- Correspondence:
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
| | - Marcello Merli
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy; (M.M.); (L.S.)
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.); (S.M.)
| | - Francesco Princivalle
- Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss, 1, 34128 Trieste, Italy;
| | - Luciana Sciascia
- Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi, 22, 90123 Palermo, Italy; (M.M.); (L.S.)
| |
Collapse
|
10
|
Nielsen RB, Kahnt A, Dillen L, Wuyts K, Snoeys J, Nielsen UG, Holm R, Nielsen CU. Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transport. Int J Pharm 2019; 571:118696. [DOI: 10.1016/j.ijpharm.2019.118696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/23/2019] [Accepted: 09/13/2019] [Indexed: 12/01/2022]
|
11
|
Biswas B, Warr LN, Hilder EF, Goswami N, Rahman MM, Churchman JG, Vasilev K, Pan G, Naidu R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev 2019; 48:3740-3770. [PMID: 31206104 DOI: 10.1039/c8cs01019f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the wide range of materials used for remediating environmental contaminants, modified and functionalised nanoclays show particular promise as advanced sorbents, improved dispersants, or biodegradation enhancers. However, many chemically modified nanoclay materials are incompatible with living organisms when they are used in natural systems with detrimental implications for ecosystem recovery. Here we critically review the pros and cons of functionalised nanoclays and provide new perspectives on the synthesis of environmentally friendly varieties. Particular focus is given to finding alternatives to conventional surfactants used in modified nanoclay products, and to exploring strategies in synthesising nanoclay-supported metal and metal oxide nanoparticles. A large number of promising nanoclay-based sorbents are yet to satisfy environmental biocompatibility in situ but opportunities are there to tailor them to produce "biocompatible" or regenerative/reusable materials.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia. and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Laurence N Warr
- Institute for Geography and Geology, University of Greifswald, D-17487 Greifswald, Germany
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Nirmal Goswami
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mohammad M Rahman
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jock G Churchman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Direksilp C, Sirivat A. Tunable size and shape of conductive poly(
N
‐methylaniline) based on surfactant template and doping. POLYM INT 2019. [DOI: 10.1002/pi.5793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chatrawee Direksilp
- Conductive and Electroactive Polymer Research Unit, Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT)Chulalongkorn University Research Building Bangkok Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymer Research Unit, Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT)Chulalongkorn University Research Building Bangkok Thailand
| |
Collapse
|
13
|
Abstract
The review provides an overview of the mesoporous inorganic particles employed as drug delivery systems for controlled and sustained release of drugs. We have classified promising nanomaterials for drug delivery on the basis of their natural or synthetic origin. Nanoclays are available in different morphologies (nanotubes, nanoplates and nanofibers) and they are typically available at low cost from natural resources. The surface chemistry of nanoclays is versatile for targeted modifications to control loading and release properties. Synthetic nanomaterials (imogolite, laponite and mesoporous silica) present the advantages of well-established purity and availability with size features that are finely controlled. Both nanoclays and inorganic synthetic nanoparticles can be functionalized forming organic/inorganic architectures with stimuli-responsive features.
Collapse
|
14
|
|
15
|
Blanco I, Bottino FA, Cicala G, Latteri A, Recca A. Synthesis and thermal characterization of mono alkyl hepta phenyl POSS/PS nanocomposites. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Bertolino V, Cavallaro G, Lazzara G, Merli M, Milioto S, Parisi F, Sciascia L. Effect of the Biopolymer Charge and the Nanoclay Morphology on Nanocomposite Materials. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01816] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Bertolino
- Dipartimento
di Fisica e Chimica, Università degli Studi di Palermo, Viale
delle Scienze pad. 17, Palermo I-90128, Italy
| | - Giuseppe Cavallaro
- Dipartimento
di Fisica e Chimica, Università degli Studi di Palermo, Viale
delle Scienze pad. 17, Palermo I-90128, Italy
| | - Giuseppe Lazzara
- Dipartimento
di Fisica e Chimica, Università degli Studi di Palermo, Viale
delle Scienze pad. 17, Palermo I-90128, Italy
| | - Marcello Merli
- Dipartimento
di Scienze della Terra e del Mare, Università degli Studi di Palermo, via Archirafi 36, Palermo I-90123, Italy
| | - Stefana Milioto
- Dipartimento
di Fisica e Chimica, Università degli Studi di Palermo, Viale
delle Scienze pad. 17, Palermo I-90128, Italy
| | - Filippo Parisi
- Dipartimento
di Fisica e Chimica, Università degli Studi di Palermo, Viale
delle Scienze pad. 17, Palermo I-90128, Italy
| | - Luciana Sciascia
- Dipartimento
di Scienze della Terra e del Mare, Università degli Studi di Palermo, via Archirafi 36, Palermo I-90123, Italy
| |
Collapse
|