1
|
Tu T, Zhang S, Li J, Jiang C, Ren J, Zhang S, Meng X, Peng H, Xing D, Zhang H, Hong T, Yu J. Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss. Angiogenesis 2024; 28:3. [PMID: 39636449 DOI: 10.1007/s10456-024-09957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Shiju Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Xiaosheng Meng
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Hao Peng
- Department of Neurosurgery in Hainan General Hospital, Hainan Medical University, Hainan, China
- Department of neurosurgery, The second people's hospital of hainan province, Hainan, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
2
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
3
|
Blei F. Update February 2024. Lymphat Res Biol 2024; 22:66-88. [PMID: 38394089 DOI: 10.1089/lrb.2024.29157.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Hospital at NYU Langone, The Laurence D. And Lori Weider Fink Children's Ambulatory Care Center, New York, New York, USA
| |
Collapse
|