1
|
Tischer J, Szeles JC, Kaniusas E. Personalized auricular vagus nerve stimulation: beat-to-beat deceleration dominates in systole-gated stimulation during inspiration - a pilot study. Front Physiol 2025; 15:1495868. [PMID: 39835202 PMCID: PMC11743728 DOI: 10.3389/fphys.2024.1495868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Neuromodulation comes into focus as a non-pharmacological therapy with the vagus nerve as modulation target. The auricular vagus nerve stimulation (aVNS) has emerged to treat chronic diseases while re-establishing the sympathovagal balance and activating parasympathetic anti-inflammatory pathways. aVNS leads still to over and under-stimulation and is limited in therapeutic efficiency. A potential avenue is personalization of aVNS based on time-varying cardiorespiratory rhythms of the human body. In the pilot study, we propose personalized cardiac-gated aVNS and evaluate its effects on the instantaneous beat-to-beat intervals (RR intervals). Modulation of RR is expected to reveal the aVNS efficiency since the efferent cardiac branch of the stimulated afferent vagus nerve governs the instantaneous RR. Five healthy subjects were subjected to aVNS. Each subject underwent two 25-min sessions. The first session started with the non-gated open-loop aVNS, followed by the systole-gated closed-loop aVNS, then the non-gated, diastole-gated, and non-gated aVNS, each for 5min. In the second session, systole and diastole gated aVNS were interchanged. Changes in RR are analysed by comparing the prolongation of RR intervals with respect to the proceeding RR interval where aVNS took place. These RR changes are considered as a function of the personalized stimulation onset, the stimulation angle starting with R peak. The influence of the respiration phases is considered on the cardiovagal modulation. The results show that the systole-gated aVNS tends to prolong and shorten RR when stimulated after and before the R peak, respectively. The later in time is the stimulation onset within the diastole-gated aVNS, the longer tends to be the subsequent RR interval. The tendency of the RR prolongation raises with increasing stimulation angle and then gradually levels off with increasing delay of the considered RR interval from the one where aVNS took place. The slope of this rise is larger for the systole-gated than diastole-gated aVNS. When considering individual respiration phases, the inspiratory systole-gated aVNS seems to show the largest slope values and thus the largest cardiovagal modulatory capacity of the personalized time-gated aVNS. This pilot study indicates aVNS capacity to modulate the heartbeat and thus the parasympathetic activity which is attenuated in chronic diseases. The modulation is highest for the systole-gated aVNS during inspiration.
Collapse
Affiliation(s)
- Johannes Tischer
- Institute of Biomedical Electronics, Vienna University of Technology, Vienna, Austria
| | - Jozsef Constantin Szeles
- Center for Wound Surgery and Special Pain Therapy, Health Service Center, Wiener Privatklinik, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Biomedical Electronics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
2
|
de Faria GM, Lopes EG, Tobaldini E, Montano N, Cunha TS, Casali KR, de Amorim HA. Advances in Non-Invasive Neuromodulation: Designing Closed-Loop Devices for Respiratory-Controlled Transcutaneous Vagus Nerve Stimulation. Healthcare (Basel) 2023; 12:31. [PMID: 38200937 PMCID: PMC10778699 DOI: 10.3390/healthcare12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Studies suggest non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) as a potential therapeutic option for various pathological conditions, such as epilepsy and depression. Exhalation-controlled taVNS, which synchronizes stimulation with internal body rhythms, holds promise for enhanced neuromodulation, but there is no closed-loop system in the literature capable of performing such integration in real time. In this context, the objective was to develop real-time signal processing techniques and an integrated closed-loop device with sensors to acquire physiological data. After a conditioning stage, the signal is processed and delivers synchronized electrical stimulation during the patient's expiratory phase. Additional modules were designed for processing, software-controlled selectors, remote and autonomous operation, improved analysis, and graphical visualization. The signal processing method effectively extracted respiratory cycles and successfully attenuated signal noise. Heart rate variability was assessed in real time, using linear statistical evaluation. The prototype feedback stimulator device was physically constructed. Respiratory peak detection achieved an accuracy of 90%, and the real-time processing resulted in a small delay of up to 150 ms in the detection of the expiratory phase. Thus, preliminary results show promising accuracy, indicating the need for additional tests to optimize real-time processing and the application of the prototype in clinical studies.
Collapse
Affiliation(s)
- Gabriella Maria de Faria
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Eugênia Gonzales Lopes
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (E.T.); (N.M.)
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (E.T.); (N.M.)
| | - Tatiana Sousa Cunha
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Karina Rabello Casali
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| | - Henrique Alves de Amorim
- Institute of Science and Technology, Universidade Federal de São Paulo, São José dos Campos 12231-280, Brazil; (G.M.d.F.); (E.G.L.); (T.S.C.); (H.A.d.A.)
| |
Collapse
|
3
|
Shi X, Zhao J, Xu S, Ren M, Wu Y, Chen X, Zhou Z, Chen S, Huang Y, Li Y, Shan C. Clinical Research Progress of the Post-Stroke Upper Limb Motor Function Improvement via Transcutaneous Auricular Vagus Nerve Stimulation. Neural Plast 2023; 2023:9532713. [PMID: 37789954 PMCID: PMC10545466 DOI: 10.1155/2023/9532713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Stroke is a disease with high morbidity and disability, and motor impairment is a common sequela of stroke. Transcutaneous auricular vagus nerve stimulation (taVNS) is a type of non-invasive stimulation, which can effectively improve post-stroke motor dysfunction. This review discusses stimulation parameters, intervention timing, and the development of innovative devices for taVNS. We further summarize the application of taVNS in improving post-stroke upper limb motor function to further promote the clinical research and application of taVNS in the rehabilitation of post-stroke upper limb motor dysfunction.
Collapse
Affiliation(s)
- Xiaolong Shi
- Department of Rehabilitation Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jingjun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Shutian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 201203, Shanghai, China
| | - Meng Ren
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Xixi Chen
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Zhiqing Zhou
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Songmei Chen
- Shanghai No.3 Rehabilitation Hospital, 200436, Shanghai, China
| | - Yu Huang
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yuanli Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 201203, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, Shanghai, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, 201203, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| |
Collapse
|