1
|
Holland K, Blazeck J. High throughput mutagenesis and screening for yeast engineering. J Biol Eng 2022; 16:37. [PMID: 36575525 PMCID: PMC9793380 DOI: 10.1186/s13036-022-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
The eukaryotic yeast Saccharomyces cerevisiae is a model host utilized for whole cell biocatalytic conversions, protein evolution, and scientific inquiries into the pathogenesis of human disease. Over the past decade, the scale and pace of such studies has drastically increased alongside the advent of novel tools for both genome-wide studies and targeted genetic mutagenesis. In this review, we will detail past and present (e.g., CRISPR/Cas) genome-scale screening platforms, typically employed in the context of growth-based selections for improved whole cell phenotype or for mechanistic interrogations. We will further highlight recent advances that enable the rapid and often continuous evolution of biomolecules with improved function. Additionally, we will detail the corresponding advances in high throughput selection and screening strategies that are essential for assessing or isolating cellular and protein improvements. Finally, we will describe how future developments can continue to advance yeast high throughput engineering.
Collapse
Affiliation(s)
- Kendreze Holland
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA
| | - John Blazeck
- grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia USA
| |
Collapse
|
2
|
Oftadeh O, Salvy P, Masid M, Curvat M, Miskovic L, Hatzimanikatis V. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat Commun 2021; 12:4790. [PMID: 34373465 PMCID: PMC8352978 DOI: 10.1038/s41467-021-25158-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.
Collapse
Affiliation(s)
- Omid Oftadeh
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Salvy
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Cambrium GmbH, Berlin, Germany
| | - Maria Masid
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maxime Curvat
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Quotient Suisse SA, Eysins, Switzerland
| | - Ljubisa Miskovic
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Optimization of an Industrial Medium from Molasses for Bioethanol Production Using the Taguchi Statistical Experimental-Design Method. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The production of bioethanol as a clean liquid fuel in a cost-effective way is highly desired by global energetics. Sugar beet molasses is a renewable and cheap substrate for the production of biotechnological products. Therefore, the aim of the current study was the optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental-design method. First, the growth rate of yeast cells and the amount of ethanol produced by the Saccharomyces cerevisiae strain sahand 101 were investigated in aerobic and aerobic–anaerobic conditions. The yeast strain produced 8% (v/v) bioethanol in a medium containing molasses with 18% Brix in aerobic–anaerobic conditions. The main factors of the medium, including molasses, ammonium sulfate, urea, and pH, were optimized for the increase of bioethanol production by the Taguchi method. Bioethanol production reached 10% (v/v) after optimization of the medium in flask culture. The yeast strain produced 11% (v/v) bioethanol in the bioreactor culture containing the optimized medium, which is an acceptable amount of bioethanol produced from molasses at the industrial scale. The results showed that the Taguchi method is an effective method for the design of experiments aiming to optimize the medium for bioethanol production by reducing the number of experiments and time.
Collapse
|
4
|
Islam ZU, Klykov SP, Yu Z, Chang D, Hassan EB, Zhang H. Fermentation of Detoxified Acid-Hydrolyzed Pyrolytic Anhydrosugars into Bioethanol with Saccharomyces cerevisiae 2.399. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018; 17:36. [PMID: 29506528 PMCID: PMC5836383 DOI: 10.1186/s12934-018-0879-x] [Citation(s) in RCA: 664] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microalgae have recently attracted considerable interest worldwide, due to their extensive application potential in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae are renewable, sustainable, and economical sources of biofuels, bioactive medicinal products, and food ingredients. Several microalgae species have been investigated for their potential as value-added products with remarkable pharmacological and biological qualities. As biofuels, they are a perfect substitute to liquid fossil fuels with respect to cost, renewability, and environmental concerns. Microalgae have a significant ability to convert atmospheric CO2 to useful products such as carbohydrates, lipids, and other bioactive metabolites. Although microalgae are feasible sources for bioenergy and biopharmaceuticals in general, some limitations and challenges remain, which must be overcome to upgrade the technology from pilot-phase to industrial level. The most challenging and crucial issues are enhancing microalgae growth rate and product synthesis, dewatering algae culture for biomass production, pretreating biomass, and optimizing the fermentation process in case of algal bioethanol production. The present review describes the advantages of microalgae for the production of biofuels and various bioactive compounds and discusses culturing parameters.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San 96-1, Dun-Duk Dong, Yeosu, Chonnam 550-749 South Korea
| |
Collapse
|
6
|
Adamberg K, Valgepea K, Vilu R. Advanced continuous cultivation methods for systems microbiology. Microbiology (Reading) 2015. [DOI: 10.1099/mic.0.000146] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kaarel Adamberg
- Tallinn University of Technology, Department of Food Processing, Ehitajate tee 5, 19086 Tallinn, Estonia
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Kaspar Valgepea
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Competence Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
- Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
7
|
Macroscopic modelling of bioethanol production from potato peel wastes in batch cultures supplemented with inorganic nitrogen. Bioprocess Biosyst Eng 2015; 38:1819-33. [DOI: 10.1007/s00449-015-1423-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
8
|
Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 2015; 33:228-59. [PMID: 25841213 DOI: 10.1016/j.copbio.2015.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production.
Collapse
Affiliation(s)
- Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| | - Sandip B Bankar
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth University, Pune-Satara Road, Pune 411043, India
| | - Elis C A Eleutherio
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Programa de Pós-graduação Bioquimica, Rio de Janeiro, RJ, Brazil
| | - Thaddeus C Ezeji
- Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven and Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, Leuven-Heverlee B-3001, Belgium
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
9
|
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles. Appl Environ Microbiol 2014; 80:4433-49. [PMID: 24814792 DOI: 10.1128/aem.00785-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature.
Collapse
|
10
|
Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A. Bioethanol production from fermentable sugar juice. ScientificWorldJournal 2014; 2014:957102. [PMID: 24715820 PMCID: PMC3970039 DOI: 10.1155/2014/957102] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/31/2013] [Indexed: 11/25/2022] Open
Abstract
Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks.
Collapse
Affiliation(s)
- Hossain Zabed
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Golam Faruq
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jaya Narayan Sahu
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei, Tungku Gadong, P.O. Box 2909, Brunei Darussalam
| | - Mohd Sofian Azirun
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rosli Hashim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amru Nasrulhaq Boyce
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Kasemets K, Suppi S, Künnis-Beres K, Kahru A. Toxicity of CuO Nanoparticles to Yeast Saccharomyces cerevisiae BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chem Res Toxicol 2013; 26:356-67. [DOI: 10.1021/tx300467d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaja Kasemets
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Sandra Suppi
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
- Department of Chemical and Materials
Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Kai Künnis-Beres
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Anne Kahru
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| |
Collapse
|
12
|
Dragosits M, Frascotti G, Bernard-Granger L, Vázquez F, Giuliani M, Baumann K, Rodríguez-Carmona E, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttilä M, Ferrer P, Luisa Tutino M, Villaverde A, Porro D, Mattanovich D. Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnol Prog 2010; 27:38-46. [DOI: 10.1002/btpr.524] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/28/2010] [Indexed: 12/14/2022]
|
13
|
Metabolic changes underlying the higher accumulation of glutathione in Saccharomyces cerevisiae mutants. Appl Microbiol Biotechnol 2010; 89:1029-37. [DOI: 10.1007/s00253-010-2946-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/08/2010] [Indexed: 12/15/2022]
|
14
|
Iyer PV, Singhal RS. Glutaminase Production using Zygosaccharomyces rouxii NRRL-Y 2547: Effect of Aeration, Agitation Regimes and Feeding Strategies. Chem Eng Technol 2010. [DOI: 10.1002/ceat.200900230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T. The response of the yeastSaccharomyces cerevisiaeto sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p. FEMS Yeast Res 2008; 8:829-38. [DOI: 10.1111/j.1567-1364.2008.00391.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|