1
|
Dongre DS, Saha UB, Saroj SD. Exploring the role of gut microbiota in antibiotic resistance and prevention. Ann Med 2025; 57:2478317. [PMID: 40096354 PMCID: PMC11915737 DOI: 10.1080/07853890.2025.2478317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND/INTRODUCTION Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation.
Collapse
Affiliation(s)
- Devyani S Dongre
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Ujjayni B Saha
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| |
Collapse
|
2
|
Tang Y, Zhang Y, Chen C, Cao Y, Wang Q, Tang C. Gut microbiota: A new window for the prevention and treatment of neuropsychiatric disease. J Cent Nerv Syst Dis 2025; 17:11795735251322450. [PMID: 39989718 PMCID: PMC11846125 DOI: 10.1177/11795735251322450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Under normal physiological conditions, gut microbiota and host mutually coexist. They play key roles in maintaining intestinal barrier integrity, absorption, and metabolism, as well as promoting the development of the central nervous system (CNS) and emotional regulation. The dysregulation of gut microbiota homeostasis has attracted significant research interest, specifically in its impact on neurological and psychiatric disorders. Recent studies have highlighted the important role of the gut- brain axis in conditions including Alzheimer's Disease (AD), Parkinson's Disease (PD), and depression. This review aims to elucidate the regulatory mechanisms by which gut microbiota affect the progression of CNS disorders via the gut-brain axis. Additionally, we discuss the current research landscape, identify gaps, and propose future directions for microbial interventions against these diseases. Finally, we provide a theoretical reference for clinical treatment strategies and drug development for AD, PD, and depression.
Collapse
Affiliation(s)
- Yali Tang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, People’s Republic of China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
3
|
Li F, Liu J, Maldonado-Gómez MX, Frese SA, Gänzle MG, Walter J. Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples. MICROBIOME 2024; 12:168. [PMID: 39244633 PMCID: PMC11380787 DOI: 10.1186/s40168-024-01881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. RESULTS Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). CONCLUSIONS Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- School of Microbiology, Department of Medicine, and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
4
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
5
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
6
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
7
|
Pereira WA, Mendonça CMN, Urquiza AV, Marteinsson VÞ, LeBlanc JG, Cotter PD, Villalobos EF, Romero J, Oliveira RPS. Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. Microorganisms 2022; 10:microorganisms10091705. [PMID: 36144306 PMCID: PMC9503917 DOI: 10.3390/microorganisms10091705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity.
Collapse
Affiliation(s)
- Wellison Amorim Pereira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Carlos Miguel N. Mendonça
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | | | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucuman T4000, Argentina
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - Elías Figueroa Villalobos
- Nucleus of Research in Food Production, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
- Correspondence:
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, El Libano 5524, Santiago 783090, Chile
| | - Ricardo P. S. Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, São Paulo University, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
8
|
Peng X, Ed-Dra A, Yue M. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11244-11262. [PMID: 35694810 DOI: 10.1080/10408398.2022.2087174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
9
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
10
|
Rannikko J, Holmberg V, Karppelin M, Arvola P, Huttunen R, Mattila E, Kerttula N, Puhto T, Tamm Ü, Koivula I, Vuento R, Syrjänen J, Hohenthal U. Fungemia and Other Fungal Infections Associated with Use of Saccharomyces boulardii Probiotic Supplements. Emerg Infect Dis 2021; 27. [PMID: 34287140 PMCID: PMC8314839 DOI: 10.3201/eid2708.210018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Use of these supplements should be considered carefully for patients whose gastrointestinal tract integrity might be compromised. Because of widespread use of probiotics, their safety must be guaranteed. We assessed use of Saccharomyces boulardii probiotic yeast from medical records for patients who had Saccharomyces fungemia or other clinical Saccharomyces culture findings. We evaluated all Saccharomyces sp. findings at 5 university hospitals in Finland during 2009–2018. We found 46 patients who had Saccharomyces fungemia; at least 20 (43%) were using S. boulardii probiotic. Compared with a control group that had bacteremia or candidemia, the odds ratio for use of an S. boulardii probiotic was 14 (95% CI 4–44). Of 1,153 nonblood culture findings, the history for 125 patients was checked; at least 24 (19%) were using the probiotic (odds ratio 10, 95% CI 3–32). This study adds to published fungemia cases linked to use of S. boulardii probiotic and sheds light on the scale of nonblood Saccharomyces culture findings that are also linked to use of this probiotic.
Collapse
|
11
|
Nøhr-Meldgaard K, Struve C, Ingmer H, Agersø Y. The Tetracycline Resistance Gene, tet(W) in Bifidobacterium animalis subsp. lactis Follows Phylogeny and Differs From tet(W) in Other Species. Front Microbiol 2021; 12:658943. [PMID: 34335493 PMCID: PMC8319848 DOI: 10.3389/fmicb.2021.658943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
The tetracycline resistance gene tet(W) encodes a ribosomal protection protein that confers a low level of tetracycline resistance in the probiotic bacterium Bifidobacterium animalis subsp. lactis. With the aim of assessing its phylogenetic origin and potential mobility, we have performed phylogenetic and in silico genome analysis of tet(W) and its flanking genes. tet(W) was found in 41 out of 44 examined B. animalis subsp. lactis strains. In 38 strains, tet(W) was flanked by an IS5-like element and an open reading frame encoding a hypothetical protein, which exhibited a similar GC content (51–53%). These genes were positioned in the same genomic context within the examined genomes. Phylogenetically, the B. animalis subsp. lactis tet(W) cluster in a clade separate from tet(W) of other species and genera. This is not the case for tet(W) encoded by other bifidobacteria and other species where tet(W) is often found in association with transferable elements or in different genomic regions. An IS5-like element identical to the one flanking the B. animalis subsp. lactis tet(W) has been found in a human gut related bacterium, but it was not associated with any tet(W) genes. This suggests that the IS5-like element is not associated with genetic mobility. tet(W) and the IS5 element have previously been shown to be co-transcribed, indicating that co-localization may be associated with tet(W) expression. Here, we present a method where phylogenetic and in silico genome analysis can be used to determine whether antibiotic resistance genes should be considered innate (intrinsic) or acquired. We find that B. animalis subsp. lactis encoded tet(W) is part of the ancient resistome and thereby possess a negligible risk of transfer.
Collapse
Affiliation(s)
- Katrine Nøhr-Meldgaard
- Chr. Hansen A/S, Hørsholm, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yvonne Agersø
- Chr. Hansen A/S, Hørsholm, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Abstract
The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L. animalis originating from an adjunct culture. Thus, there is a risk of horizontal transmission of this gene. It is necessary to eliminate such strains from use in the food industry. This study provides relevant data concerning the use of lactobacilli in safe food production. To ensure food safety, detailed characterization of resistance to antimicrobials is necessary not only in starter strains but also in non-starter lactic acid bacteria isolated from food products.
Collapse
|
13
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Pace F, Macchini F, Massimo Castagna V. Safety of probiotics in humans: A dark side revealed? Dig Liver Dis 2020; 52:981-985. [PMID: 32563720 DOI: 10.1016/j.dld.2020.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Fabio Pace
- Gastroenterology Unit, Bolognini Hospital, ASST Bergamo Est, Seriate, BG, Italy
| | - Federico Macchini
- Gastroenterology Unit, Bolognini Hospital, ASST Bergamo Est, Seriate, BG, Italy.
| | | |
Collapse
|
15
|
Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K, Jing B, Zeng D. Investigation of Lactic Acid Bacteria Isolated from Giant Panda Feces for Potential Probiotics In Vitro. Probiotics Antimicrob Proteins 2019; 11:85-91. [PMID: 29353415 DOI: 10.1007/s12602-017-9381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study aimed to isolate an optimal lactic acid bacterial strain from the feces of healthy giant pandas. The strain exhibited good stability at low pH and high bile salt concentrations, activity against pathogens relevant to pandas, and antibiotic susceptibility. In the current study, 25 isolates were obtained from de Man, Rogosa, and Sharpe agar. Two (E21 and G83) and eight (E1, E2, E16, E18, E21, E69, E70, and G83) isolates demonstrated good performance at pH 2.0 and bile 2% (w/v), respectively. Three isolates (G83, G88, and G90) possessed better antimicrobial effect on enterotoxigenic Escherichia coli CVCC196 (ETEC) than the rest. One isolate (G83) strongly affected Salmonella, whereas three (G83, G87, and G88) exhibited inhibitory activity against Staphylococcus aureus. All isolates were multi-drug resistant. These isolates were identified as Lactobacillus (5 isolates) and Enterococcus (20 isolates) by 16S rRNA sequencing. Virulence genes were detected in Enterococcus isolates. Isolate G83 was identified as Lactobacillus plantarum and was considered as the best probiotic candidate among all of the experimental isolates. This study provided necessary and important theoretical guidance for further experiments on G83 in vivo.
Collapse
Affiliation(s)
- Qian Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Zhirong Peng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo, Chengdu, 610081, China
| | - Meiling Xie
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yicen Lin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
16
|
Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin Nutr 2019; 39:1315-1323. [PMID: 31174942 DOI: 10.1016/j.clnu.2019.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
Abstract
Probiotics administered orally endure one of two fates: some merely pass through, but others colonize the gut permanently. Although probiotics that can stably engraft in the gut are believed to exert beneficial effects on the host in terms of increasing the efficiency of metabolic activity and enabling durable modulation of the indigenous microbiota, the strains of long-term gut colonizers are poorly delineated. This review summarizes the gut colonization modes of Lactobacillus and Bifidobacterium in the context of their natural niches and engraftment metadata in an attempt to identify organisms with long-term gut colonization potential. Advances in colonization evaluation methods are identified, and the effects of dietary components and metabolic interactions among ingested strains on bacterial colonization are discussed.
Collapse
|
17
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:E104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|
18
|
Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z. Use of probiotics in aquaculture of China-a review of the past decade. FISH & SHELLFISH IMMUNOLOGY 2019; 86:734-755. [PMID: 30553887 DOI: 10.1016/j.fsi.2018.12.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.
Collapse
Affiliation(s)
- Anran Wang
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium; Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chao Ran
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yanbo Wang
- Marine Resource & Nutritional Biology, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, China
| | - Zhen Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qianwen Ding
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jérôme Bindelle
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
19
|
Abstract
Microbial transglutaminase is heavily used in the food processing industries to improve food qualities. Being a protein's glue, by cross-linking it creates neoepitope complexes that are immunogenic and potentially pathogenic in celiac disease. Despite low sequence identity, it imitates functionally its family member, the endogenous tissue transglutaminase, which is the autoantigen of celiac disease. The present comprehensive review highlights the enzyme characteristics, endogenous and exogenous intestinal sources, its cross-talks with gluten and gliadin, its immunogenicity and potential pathogenicity and risks for the gluten induced conditions. If substantiated, it might represent a new environmental inducer of celiac disease. The present findings might affect nutritional product labeling, processed food additive policies and consumer health education.
Collapse
Affiliation(s)
- Lerner Aaron
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; AESKU.KIPP Institute, Wendelsheim, Germany.
| | | |
Collapse
|
20
|
Affiliation(s)
- Pieter A Cohen
- Cambridge Health Alliance, Harvard Medical School, Boston, Massachusetts.,Somerville Hospital Primary Care, Somerville, Massachusetts
| |
Collapse
|
21
|
Klopper KB, Deane SM, Dicks LMT. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties. Probiotics Antimicrob Proteins 2018; 10:89-97. [PMID: 28756502 DOI: 10.1007/s12602-017-9307-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).
Collapse
Affiliation(s)
- Kyle B Klopper
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
22
|
Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol 2018; 9:2597. [PMID: 30443241 PMCID: PMC6221985 DOI: 10.3389/fmicb.2018.02597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine, caused by gluten induced inflammation in some individuals susceptible to genetic and environmental influences. To date, pathophysiology of CD in relation to intestinal microbiota is not known well. This review relies on contribution of intestinal microbiome and oral microbiome in pathogenesis of CD based on their interactions with gluten, thereby highlighting the role of upper gastrointestinal microbiota. It has been hypothesized that CD might be triggered by additive effects of immunotoxic gluten peptides and intestinal dysbiosis (microbial imbalance) in the people with or without genetic susceptibilities, where antibiotics may be deriving dysbiotic agents. In contrast to the intestinal dysbiosis, genetic factors even seem secondary in disease outcome thus suggesting the importance of interaction between microbes and dietary factors in immune regulation at intestinal mucosa. Moreover, association of imbalanced counts of some commensal microbes in intestine of CD patients suggests the scope for probiotic therapies. Lactobacilli and specific intestinal and oral bacteria are potent source of gluten degrading enzymes (glutenases) that may contribute to commercialization of a novel glutenase therapy. In this review, we shall discuss advantages and disadvantages of food based therapies along with probiotic therapies where probiotic therapies are expected to emerge as the safest biotherapies among other in-process therapies. In addition, this review emphasizes on differential targets of probiotics that make them suitable to manage CD as along with glutenase activity, they also exhibit immunomodulatory and intestinal microbiome modulatory properties.
Collapse
Affiliation(s)
- Atul Munish Chander
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shalini Jain
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
23
|
Thumu SCR, Halami PM. Conjugal transfer of erm(B) and multiple tet genes from Lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Res Int 2018; 116:1066-1075. [PMID: 30716890 DOI: 10.1016/j.foodres.2018.09.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Three strains of Lactobacillus comprising Lactobacillus salivarius (CHS-1E and CH7-1E) and Lactobacillus reuteri (CH2-2) previously isolated from chicken meat were analyzed for their transferability of antibiotic resistance (AR) genes to pathogenic strains under in vivo, in vitro, and during food fermentation. For in vivo model, Albino Wistar rats were inoculated with 1010 CFU/g/ml of Enterococcus faecalis JH2-2 (recipient). After 7 days, either of two donors L. salivarius CH7-1E or L. reuteri [harbouring erythromycin and tetracycline resistance genes] were introduced at a concentration of 109 CFU/ml daily for 1 week. Two days after donor introduction, there was a stable increase in the number of transconjugants in the animal faeces from 102 to 103 CFU/g and presented erm(B), tet(M), tet(L) and tet(W) in their genome like donor strains. Similar observations were made with in vitro filter mating between CHS-1E, CH2-2 and CH7-1E and E. faecalis JH2-2 with transfer frequencies of 1 × 10-4, 3.8 × 10-3 and 2 × 10-3 per donor cell respectively. With the results obtained in vivo and in vitro, the AR transferability of donor strains was estimated during food fermentation (chicken sausage, fermented milk or idli batter) with pathogenic recipient strains added as contaminants. At the end of mating period, phenotypic resistance to erythromycin and tetracycline in Listeria monocytogenes and Yersinia enterocolitica strains was observed. This study showed the ability of food borne Lactobacillus in diffusing their AR traits in diverse natural environments increasing their concern of AR dissemination in the food chain when used as food additives and/or probiotics.
Collapse
Affiliation(s)
- Surya Chandra Rao Thumu
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
24
|
El-Ziney MG. Molecular and Probiotic Characterizations of <i>Lactobacillus reuteri</i> DSM 12246 and Impact of pH on Biomass and Metabolic Profile in Batch-Culture. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.81002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Torsten M, Aaron L. Microbial Transglutaminase Is Immunogenic and Potentially Pathogenic in Pediatric Celiac Disease. Front Pediatr 2018; 6:389. [PMID: 30619787 PMCID: PMC6297833 DOI: 10.3389/fped.2018.00389] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The enzyme microbial transglutaminase is heavily used in the food processing industries to ameliorate food qualities and elongate the products' shelf life. As a protein's glue, it cross-links gliadin peptides, creating neo-complexes that are immunogenic and potentially pathogenic to celiac disease communities. Even lacking sequence identity, it imitates functionally the endogenous tissue transglutaminase, known to be the autoantigen of celiac disease and representing an undisputable key player in celiac disease initiation and progress. The present review expend on the enzyme characteristics, exogenous intestinal sources, its cross-linking avidity to gluten or gliadin, turning naïve protein to immunogenic ones. Several observation on microbial transglutaminase cross linked complexes immunogenicity in celiac patients are reviewed and its pathogenicity is summarized. Warnings on its potential risks for the gluten dependent conditions are highlighted. When substantiated, it might represent a new environmental factor of celiac disease genesis. It is hoped that the presented knowledge will encourage further research to explore the mechanism and the pathogenic pathways taken by the gliadin cross linked enzyme in driving celiac disease.
Collapse
Affiliation(s)
| | - Lerner Aaron
- AESKU. KIPP Institute, Wendelsheim, Germany.,B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Ma Q, Fu Y, Sun H, Huang Y, Li L, Yu Q, Dinnyes A, Sun Q. Antimicrobial resistance of Lactobacillus spp. from fermented foods and human gut. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017; 8:1630. [PMID: 29230215 PMCID: PMC5711824 DOI: 10.3389/fimmu.2017.01630] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - Rustam Aminov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
28
|
Skórka A, Pieścik-Lech M, Kołodziej M, Szajewska H. To add or not to add probiotics to infant formulae? An updated systematic review. Benef Microbes 2017; 8:717-725. [DOI: 10.3920/bm2016.0233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We updated evidence on the effects of the administration of probiotic-supplemented infant formulae (IF) compared with unsupplemented IF. Five databases were searched up to September 2016 for randomised controlled trials. Twenty publications were identified, including five new RCTs. Supplementation of IF with Bifidobacterium lactis Bb12, either alone or with Streptococcus thermophilus, had no effect on growth, respiratory illness, antibiotic use, stool frequency or consistency. However, there was a significant reduction in the number of episodes of gastrointestinal infections (Bb12) and a lower frequency of colic or irritability (when both strains were used). Lactobacillus johnsonii La1 had no effect on growth, gastrointestinal infections, or respiratory illness episodes. There were no effects of supplementation of IF with Bifidobacterium longum BL999, alone or with Lactobacillus rhamnosus LPR. L. rhamnosus GG was associated with better growth; it had no effect on colic/crying, or irritability, and it was associated with greater indexes of loose stools and a higher defecation frequency. Lactobacillus reuteri ATCC 55730 had no effect on growth, colic, crying, irritability, respiratory illness, antibiotic use, stool frequency, or stool consistency; however, it reduced the number of episodes of diarrhoea. L. reuteri DSM 17938 had no effect on growth, night-time sleeping, or flatulence, but it reduced the number of spitting episodes. Lactobacillus salivarius CEC5713 had no effect on growth, colic, crying, or irritability; however, it resulted in a significant reduction in the rate of diarrhoea and the number of episodes of respiratory symptoms. In conclusion, the administration of probiotic-supplemented formulae to healthy infants does not raise safety concerns with regard to growth and adverse effects. Some beneficial clinical effects are possible; however, there is no existing robust evidence to recommend their routine use. The latter conclusion may reflect the small amount of data on a specific probiotic strain(s) and outcomes, rather than a genuine lack of an effect.
Collapse
Affiliation(s)
- A. Skórka
- Department of Paediatrics, Medical University of Warsaw, Żwirki iWigury 63A, 02-091 Warsaw, Poland
| | - M. Pieścik-Lech
- Department of Paediatrics, Medical University of Warsaw, Żwirki iWigury 63A, 02-091 Warsaw, Poland
| | - M. Kołodziej
- Department of Paediatrics, Medical University of Warsaw, Żwirki iWigury 63A, 02-091 Warsaw, Poland
| | - H. Szajewska
- Department of Paediatrics, Medical University of Warsaw, Żwirki iWigury 63A, 02-091 Warsaw, Poland
| |
Collapse
|
29
|
Imperial ICVJ, Ibana JA. Addressing the Antibiotic Resistance Problem with Probiotics: Reducing the Risk of Its Double-Edged Sword Effect. Front Microbiol 2016; 7:1983. [PMID: 28018315 PMCID: PMC5156686 DOI: 10.3389/fmicb.2016.01983] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
Antibiotic resistance is a global public health problem that requires our attention. Indiscriminate antibiotic use is a major contributor in the introduction of selective pressures in our natural environments that have significantly contributed in the rapid emergence of antibiotic-resistant microbial strains. The use of probiotics in lieu of antibiotic therapy to address certain health conditions in both animals and humans may alleviate these antibiotic-mediated selective pressures. Probiotic use is defined as the actual application of live beneficial microbes to obtain a desired outcome by preventing diseased state or improving general health. Multiple studies have confirmed the beneficial effects of probiotic use in the health of both livestock and humans. As such, probiotics consumption is gaining popularity worldwide. However, concerns have been raised in the use of some probiotics strains that carry antibiotic resistance genes themselves, as they have the potential to pass the antibiotic resistance genes to pathogenic bacteria through horizontal gene transfer. Therefore, with the current public health concern on antibiotic resistance globally, in this review, we underscore the need to screen probiotic strains that are used in both livestock and human applications to assure their safety and mitigate their potential in significantly contributing to the spread of antibiotic resistance genes in our natural environments.
Collapse
Affiliation(s)
- Ivan C V J Imperial
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman Quezon City, Philippines
| | - Joyce A Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman Quezon City, Philippines
| |
Collapse
|
30
|
Lopatkin AJ, Sysoeva TA, You L. Dissecting the effects of antibiotics on horizontal gene transfer: Analysis suggests a critical role of selection dynamics. Bioessays 2016; 38:1283-1292. [PMID: 27699821 DOI: 10.1002/bies.201600133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Horizontal gene transfer (HGT) is a major mechanism responsible for the spread of antibiotic resistance. Conversely, it is often assumed that antibiotics promote HGT. Careful dissection of the literature, however, suggests a lack of conclusive evidence supporting this notion in general. This is largely due to the lack of well-defined quantitative experiments to address this question in an unambiguous manner. In this review, we discuss the extent to which HGT is responsible for the spread of antibiotic resistance and examine what is known about the effect of antibiotics on the HGT dynamics. We focus on conjugation, which is the dominant mode of HGT responsible for spreading antibiotic resistance on the global scale. Our analysis reveals a need to design experiments to quantify HGT in such a way to facilitate rigorous data interpretation. Such measurements are critical for developing novel strategies to combat resistance spread through HGT.
Collapse
Affiliation(s)
| | - Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
31
|
Abriouel H, Casado Muñoz MDC, Lavilla Lerma L, Pérez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 2015; 78:465-481. [PMID: 28433315 DOI: 10.1016/j.foodres.2015.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Wilhelm Bockelmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Rohtraud Pichner
- Hochschule Fulda, University of Applied Sciences, Department of Nutritional, Food and Consumer Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Jan Kabisch
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Gyu-Sung Cho
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Charles M A P Franz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
32
|
Deshpande G, Rao S, Patole S. Probiotics in neonatal intensive care - back to the future. Aust N Z J Obstet Gynaecol 2015; 55:210-7. [PMID: 26053361 DOI: 10.1111/ajo.12328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Abstract
Survival of extremely preterm and critically ill neonates has improved significantly over the last few decades following advances in neonatal intensive care. These include antenatal glucocorticoids, surfactant, continuous positive airway pressure support, advanced gentle modes of ventilation and inhaled nitric oxide. Probiotic supplementation is a recent significant milestone in the history of neonatal intensive care. Very few, if any, interventions match the ability of probiotics to significantly reduce the risk of death and definite necrotising enterocolitis while facilitating enteral feeds in high-risk preterm neonates. Probiotics also have a potential to benefit neonates with surgical conditions with significant gastrointestinal morbidity. Current evidence for the benefits of probiotic supplementation for neonates in an intensive care unit is reviewed. The mechanisms for the benefits of probiotics in this population are discussed, and guidelines for clinicians are provided in the context of the regulatory framework in Australia.
Collapse
Affiliation(s)
- Girish Deshpande
- Nepean Hospital, Sydney, New South Wales, Australia.,Sydney Medical School Nepean, University of Sydney, New South Wales, Australia
| | - Shripada Rao
- Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia.,Centre for Neonatal Research and Education, University of Western Australia, Perth, Western Australia, Australia
| | - Sanjay Patole
- Centre for Neonatal Research and Education, University of Western Australia, Perth, Western Australia, Australia.,King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
| |
Collapse
|
33
|
Szajewska H, Urbańska M, Chmielewska A, Weizman Z, Shamir R. Meta-analysis: Lactobacillus reuteri strain DSM 17938 (and the original strain ATCC 55730) for treating acute gastroenteritis in children. Benef Microbes 2015; 5:285-93. [PMID: 24463209 DOI: 10.3920/bm2013.0056] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lactobacillus reuteri ATCC 55730 has been shown to provide a moderate clinical effect in the treatment of acute gastroenteritis (AGE) in children. However, as the L. reuteri ATCC 55730 strain was found to carry potentially transferable resistance traits for tetracycline and lincomycin, it was replaced by a new strain, L. reuteri DSM 17938, without unwanted plasmid-borne antibiotic resistance. Bioequivalence of the two strains has been suggested. We aimed to systematically evaluate data on the effectiveness of L. reuteri DSM 17938 and the original strain, L. reuteri ATCC 55730, in the treatment of AGE in children. The Cochrane Library, MEDLINE, and EMBASE databases, reference lists, and abstract books of major scientific meetings were searched in August 2013, with no language restrictions, for relevant randomised controlled trials (RCTs). Two RCTs (n=196) that evaluated L. reuteri DSM 17938 and three RCTs (n=156) that evaluated L. reuteri ATCC 55730, which involved hospitalised children aged 3 to 60 months, met the inclusion criteria. Compared with placebo or no treatment, DSM 17938 significantly reduced the duration of diarrhoea (mean difference -32 h, 95% confidence interval (CI): -41 to -24) and increased the chance of cure on day 3 (relative risk: 3.5, 95% CI: 1.2 to 10.8, random effects model). Similar results were obtained with the original strain, L. reuteri ATCC 55730. In conclusion, in hospitalised children, use of both strains of L. reuteri reduced the duration of diarrhoea, and more children were cured within 3 days. Data from outpatients and countryspecific cost-effectiveness analyses are needed. Given the limited data and the methodological limitations of the included trials, the evidence should be viewed with caution.
Collapse
Affiliation(s)
- H Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Dzialdowska 1, 01-184 Warsaw, Poland
| | - M Urbańska
- Department of Paediatrics, The Medical University of Warsaw, Dzialdowska 1, 01-184 Warsaw, Poland
| | - A Chmielewska
- Department of Paediatrics, The Medical University of Warsaw, Dzialdowska 1, 01-184 Warsaw, Poland
| | - Z Weizman
- Pediatric Gastroenterology and Nutrition Unit, Soroka Medical Center, Ben-Gurion University, P.O. Box 151, Beer-Sheva, Israel
| | - R Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Sackler Faculty of Medicine, Tel-Aviv University, P.O. Box 559, Petach Tikvah 49202, Israel
| |
Collapse
|
34
|
The multifaceted role of commensal microbiota in homeostasis and gastrointestinal diseases. J Immunol Res 2015; 2015:321241. [PMID: 25759839 PMCID: PMC4352444 DOI: 10.1155/2015/321241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
The gastrointestinal tract houses a complex and diverse community of microbes. In recent years, an increased understanding of the importance of intestinal microbiota for human physiology has been gained. In the steady state, commensal microorganisms have a symbiotic relationship with the host and possess critical and distinct functions, including directly influencing immunity. This means that recognition of commensal antigens is necessary for the development of complete immune responses. Therefore, the immune system must face the challenge of maintaining mucosal homeostasis while dealing with undue passage of commensal or pathogenic microbes, as well as the host nutritional status or drug use. Disruption of this fine balance has been associated with the development of several intestinal inflammatory diseases. In this review, we discuss the mechanisms involved in the modulation of host-microbe interactions and how the breakdown of this homeostatic association can lead to intestinal inflammation and pathology.
Collapse
|
35
|
Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
36
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
37
|
Dinleyici EC, Vandenplas Y. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr 2014; 103:e300-5. [PMID: 24579935 DOI: 10.1111/apa.12617] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 01/01/2023]
Abstract
AIM Guidelines consider certain probiotics useful in the management of acute gastroenteritis. This study evaluated the use of Lactobacillus (L) reuteri DSM 17938. METHODS A multicentre, randomised, single-blind clinical trial was performed in hospitalised children with acute gastroenteritis lasting 12-72 h. Children received conventional therapy with, or without, 1 × 10(8) CFU of L. reuteri DSM 17938 for 5 days. The primary endpoint was the duration of diarrhoea and secondary outcomes were days of hospitalisation and the percentage of children with diarrhoea after each day of treatment. RESULTS We compared 64 children receiving L. reuteri with 63 controls. Lactobacillus reuteri reduced the duration of diarrhoea after 24 h (p < 0.001) and more diarrhoea-free children were seen in the L. reuteri than control group after 24 and 48 h (50% versus 5%, p < 0.001) and 72 h (69% versus 11%, p < 0.001). Lactobacillus reuteri reduced mean hospital stays (4.31 ± 1.3 days versus 5.46 ± 1.77 days, p < 0.001). Prolonged diarrhoea occurred in 17% of the controls, but none of the L. reuteri group. No adverse effects were reported. CONCLUSION Lactobacillus reuteri effectively reduced the duration of acute diarrhoea and hospital stays in children hospitalised with acute gastroenteritis. Outpatient data are now required.
Collapse
Affiliation(s)
- Ener Cagri Dinleyici
- Pediatric Intensive Care and Infectious Disease Unit; Department of Pediatrics; Eskisehir Osmangazi University Faculty of Medicine; Eskisehir Turkey
| | - Yvan Vandenplas
- Department of Paediatrics; UZ Brussel; Vrije Universiteit Brussel; Brussels Belgium
| | | |
Collapse
|
38
|
Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 2014; 7:167-76. [PMID: 25018641 PMCID: PMC4073975 DOI: 10.2147/idr.s48820] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.
Collapse
|
39
|
Use of probiotics for management of acute gastroenteritis: a position paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr 2014; 58:531-9. [PMID: 24614141 DOI: 10.1097/mpg.0000000000000320] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of probiotics has been suggested in the treatment of acute gastroenteritis (AGE) in addition to early rehydration and avoidance of dietary restrictions. This document provides recommendations for the use of probiotics for the treatment of AGE in previously healthy infants and children based on a systematic review of previously completed systematic reviews and of randomized controlled trials (RCTs) published subsequently to these reviews. The recommendations were formulated only if at least 2 RCTs that used a given probiotic (with strain specification) were available. The GRADE system developed by the Grading of Recommendations, Assessment, Development, and Evaluations Working Group, was used to grade the strength of evidence and grades of recommendations used in these guidelines. It offers 4 categories of the quality of the evidence (high, moderate, low, and very low) and 2 categories of the strength of recommendation (strong or weak). The use of the following probiotics (in alphabetical order) may be considered in the management of children with AGE in addition to rehydration therapy: Lactobacillus rhamnosus GG (low quality of evidence, strong recommendation) and Saccharomyces boulardii (low quality of evidence, strong recommendation). Less compelling evidence is available for Lactobacillus reuteri DSM 17938 (very low quality of evidence, weak recommendation) and heat-inactivated Lactobacillus acidophilus LB (very low quality of evidence, weak recommendation). The latter, although traditionally discussed with other probiotics, does not fit with the definition of probiotics. Other strains or combinations of strains have been tested, but evidence of their efficacy is weak or preliminary.
Collapse
|
40
|
Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.025] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
The efficacy of Lactobacillus reuteri DSM 17938 in infants and children: a review of the current evidence. Eur J Pediatr 2014; 173:1327-37. [PMID: 24819885 PMCID: PMC4165878 DOI: 10.1007/s00431-014-2328-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 02/07/2023]
Abstract
UNLABELLED We aimed to systematically evaluate evidence on the effectiveness of Lactobacillus reuteri DSM 17938 (L. reuteri) for treating and preventing diseases in infants and children. MEDLINE and the Cochrane Library were searched in December 2013, with no language restrictions, for relevant randomized controlled trials (RCTs) and meta-analyses. The search was updated in April 2014. One systematic review and 14 RCTs met the inclusion criteria. The use of L. reuteri may be considered in the management of acute gastroenteritis as an adjunct to rehydration. There is some evidence that L. reuteri is effective in reducing the incidence of diarrhea in children attending day care centers. There is no evidence of effectiveness of L. reuteri in preventing nosocomial diarrhea in children. The administration of L. reuteri is likely to reduce crying time in infants with infantile colic in exclusively or predominantly exclusively breast-fed infants, but not in formula-fed infants. More studies are needed. Preliminary data suggest that L. reuteri may be effective in the prevention of some functional gastrointestinal disorders, such as colic and regurgitation. This innovative approach needs further evaluation by an independent research team. Preliminary evidence provides a rationale for further assessing the efficacy of L. reuteri for treating functional constipation or functional abdominal pain. However, it is too soon to recommend the routine use of L. reuteri for these conditions. There are no safety concerns with regard to the use of L. reuteri in nonimmunocompromised subjects. There are also data to support the safety of using L. reuteri in preterm infants. CONCLUSION Our results precisely define current evidence on the effects of the administration of L. reuteri DSM 17938 to the pediatric population.
Collapse
|
42
|
Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect 2014; 44:1-8. [PMID: 24290962 DOI: 10.1016/j.medmal.2013.10.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023]
Abstract
The human gut is a huge complex ecosystem where microbiota, nutrients, and host cells interact extensively, a process crucial for the gut homeostasis and host development with a real partnership. The various bacterial communities that make up the gut microbiota have many functions including metabolic, barrier effect, and trophic functions. Hence, any dysbiosis could have negative consequences in terms of health and many diseases have been associated to impairment of the gut microbiota. These close relationships between gut microbiota, health, and disease, have led to great interest in using probiotics (i.e. live micro-organisms), or prebiotics (i.e. non-digestible substrates) to positively modulate the gut microbiota to prevent or treat some diseases. This review focuses on probiotics, their mechanisms of action, safety, and major health benefits. Health benefits remain to be proven in some indications, and further studies on the best strain(s), dose, and algorithm of administration to be used are needed. Nevertheless, probiotic administration seems to have a great potential in terms of health that justifies more research.
Collapse
Affiliation(s)
- M-J Butel
- Écosystème intestinal, probiotiques, antibiotiques (EA 4065), université Paris Descartes, PRES Sorbonne Paris Cité, 4, avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
43
|
Faure C. Role of antidiarrhoeal drugs as adjunctive therapies for acute diarrhoea in children. Int J Pediatr 2013; 2013:612403. [PMID: 23533446 PMCID: PMC3603675 DOI: 10.1155/2013/612403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 12/17/2022] Open
Abstract
Acute diarrhoea is a leading cause of child mortality in developing countries. Principal pathogens include Escherichia coli, rotaviruses, and noroviruses. 90% of diarrhoeal deaths are attributable to inadequate sanitation. Acute diarrhoea is the second leading cause of overall childhood mortality and accounts for 18% of deaths among children under five. In 2004 an estimated 1.5 million children died from diarrhoea, with 80% of deaths occurring before the age of two. Treatment goals are to prevent dehydration and nutritional damage and to reduce duration and severity of diarrhoeal episodes. The recommended therapeutic regimen is to provide oral rehydration solutions (ORS) and to continue feeding. Although ORS effectively mitigates dehydration, it has no effect on the duration, severity, or frequency of diarrhoeal episodes. Adjuvant therapy with micronutrients, probiotics, or antidiarrhoeal agents may thus be useful. The WHO recommends the use of zinc tablets in association with ORS. The ESPGHAN/ESPID treatment guidelines consider the use of racecadotril, diosmectite, or probiotics as possible adjunctive therapy to ORS. Only racecadotril and diosmectite reduce stool output, but no treatment has yet been shown to reduce hospitalisation rate or mortality. Appropriate management with validated treatments may help reduce the health and economic burden of acute diarrhoea in children worldwide.
Collapse
Affiliation(s)
- Christophe Faure
- Division of Gastroenterology, Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada H3T 1C5
| |
Collapse
|
44
|
Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. Food Microbiol 2012; 30:348-54. [DOI: 10.1016/j.fm.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
|
45
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
46
|
Slany M, Jezek P, Fiserova V, Bodnarova M, Stork J, Havelkova M, Kalat F, Pavlik I. Mycobacterium marinum infections in humans and tracing of its possible environmental sources. Can J Microbiol 2011; 58:39-44. [PMID: 22182182 DOI: 10.1139/w11-104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The low frequency of nontuberculous mycobacterial infections, nonspecific symptoms for individual mycobacteria, and the lack of specific identification methods could alter correct diagnosis. This study presents a combined microbiology and molecular-based approach for Mycobacterium marinum detection in four aquarists with cutaneous mycobacterial infection. Simultaneously, ecology screening for M. marinum presence in the aquarists' fish tanks was performed. A total of 38 mycobacterial isolates originated from four human patients (n = 20), aquarium animals (n = 8), and an aquarium environment (n = 10). Isolate identification was carried out using 16S rRNA sequence analysis. A microbiology-based approach, followed by 16S rRNA sequence analysis, was successfully used for detection of M. marinum in all four patients. Animal and environmental samples were simultaneously examined, and a total of seven mycobacterial species were isolated: Mycobacterium chelonae , Mycobacterium fortuitum , Mycobacterium gordonae , Mycobacterium kansasii , Mycobacterium mantenii , Mycobacterium marinum , and Mycobacterium peregrinum . The presence of M. marinum was proven in the aquarium environments of two patients. Although M. marinum is described as being present in water, it was detected only in fish.
Collapse
Affiliation(s)
- Michal Slany
- Veterinary Research Institute, O.I.E. Reference laboratories for Paratuberculosis and Avian Tuberculosis, Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Drago L, Rodighiero V, Mattina R, Toscano M, de Vecchi E. In VitroSelection and Transferability of Antibiotic Resistance in the Probiotic Strain Lactobacillus reuteriDSM 17938. J Chemother 2011; 23:371-373. [DOI: 10.1179/joc.2011.23.6.371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
48
|
Characterization of tetracycline resistance lactobacilli isolated from swine intestines at western area of Taiwan. Anaerobe 2011; 17:239-45. [DOI: 10.1016/j.anaerobe.2011.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/01/2011] [Accepted: 08/21/2011] [Indexed: 11/18/2022]
|
49
|
Drago L, Rodighiero V, Mattina R, Toscano M, De Vecchi E. In VitroSelection of Antibiotic Resistance in the Probiotic Strain Lactobacillus rhamnosusGG ATCC 53103. J Chemother 2011; 23:211-215. [DOI: 10.1179/joc.2011.23.4.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
50
|
Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, Roos S, Matteuzzi D. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 2010; 126:e526-33. [PMID: 20713478 DOI: 10.1542/peds.2010-0433] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To test the efficacy of Lactobacillus reuteri on infantile colic and to evaluate its relationship to the gut microbiota. STUDY DESIGN Fifty exclusively breastfed colicky infants, diagnosed according to modified Wessel's criteria, were randomly assigned to receive either L reuteri DSM 17 938 (10(8) colony-forming units) or placebo daily for 21 days. Parental questionnaires monitored daily crying time and adverse effects. Stool samples were collected for microbiologic analysis. RESULTS Forty-six infants (L reuteri group: 25; placebo group: 21) completed the trial. Daily crying times in minutes/day (median [interquartile range]) were 370 (120) vs 300 (150) (P=.127) on day 0 and 35.0 (85) vs 90.0 (148) (P=.022) on day 21, in the L reuteri and placebo groups, respectively. Responders (50% reduction in crying time from baseline) were significantly higher in the L reuteri group versus placebo group on days 7 (20 vs 8; P=.006), 14 (24 vs 13; P=.007), and 21 (24 vs 15; P=.036). During the study, there was a significant increase in fecal lactobacilli (P=.002) and a reduction in fecal Escherichia coli and ammonia in the L reuteri group only (P=.001). There were no differences in weight gain, stooling frequency, or incidence of constipation or regurgitation between groups, and no adverse events related to the supplementation were observed. CONCLUSION L. reuteri DSM 17 938 at a dose of 10(8) colony-forming units per day in early breastfed infants improved symptoms of infantile colic and was well tolerated and safe. Gut microbiota changes induced by the probiotic could be involved in the observed clinical improvement.
Collapse
Affiliation(s)
- Francesco Savino
- Department of Pediatrics, Regina Margherita Children Hospital, University of Turin, Piazza Polonia, 94 10126 Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|