1
|
Wallace M, Cummings, Jr. DA, Roberts AG, Puri AW. A widespread methylotroph acyl-homoserine lactone synthase produces a new quorum sensing signal that regulates swarming in Methylobacterium fujisawaense. mBio 2024; 15:e0199923. [PMID: 38085021 PMCID: PMC10790750 DOI: 10.1128/mbio.01999-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacteria known as pink-pigmented facultative methylotrophs colonize many diverse environments on earth, play an important role in the carbon cycle, and in some cases promote plant growth. However, little is known about how these organisms interact with each other and their environment. In this work, we identify one of the chemical signals commonly used by these bacteria and discover that this signal controls swarming motility in the pink-pigmented facultative methylotroph Methylobacterium fujisawaense DSM5686. This work provides new molecular details about interactions between these important bacteria and will help scientists predict these interactions and the group behaviors they regulate from genomic sequencing information.
Collapse
Affiliation(s)
- Mike Wallace
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Dale A. Cummings, Jr.
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Andrew G. Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Aaron W. Puri
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Jahan R, McDonald IR. Diversity of Methylobacterium species associated with New Zealand native plants. FEMS Microbiol Lett 2023; 370:fnad124. [PMID: 37985695 PMCID: PMC10699869 DOI: 10.1093/femsle/fnad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Methylobacterium species are abundant colonizers of the phyllosphere due to the availability of methanol, a waste product of pectin metabolism during plant cell division. The phyllosphere is an extreme environment, with a landscape that is heterogeneous and continuously changing as the plant grows and is exposed to high levels of ultraviolet irradiation. Geographically, New Zealand (NZ) has been isolated for over a million years, has a biologically diverse flora, and is considered a biodiversity hotspot, with most native plants being endemic. We therefore hypothesize that the phyllosphere of NZ native plants harbor diverse groups of Methylobacterium species. Leaf imprinting using methanol-supplemented agar medium was used to isolate bacteria, and diversity was determined using ARDRA and 16S rRNA gene sequencing. Methylobacterium species were successfully isolated from the phyllosphere of 18 of the 20 native NZ plant species in this study, and six different species were identified: M. marchantiae, M. mesophilicum, M. adhaesivum, M. komagatae, M. extorquens, and M. phyllosphaerae. Other α, β, and γ-Proteobacteria, Actinomycetes, Bacteroidetes, and Firmicutes were also isolated, highlighting the presence of other potentially novel methanol utilizers within this ecosystem. This study identified that Methylobacterium are abundant members of the NZ phyllosphere, with species diversity and composition dependent on plant species.
Collapse
Affiliation(s)
- Rowshan Jahan
- Te Aka Mātuatua—School of Science, Te Whare Wānanga o Waikato—University of Waikato, Private Bag 3105, Hamilton 3240, Aotearoa, New Zealand
| | - Ian R McDonald
- Te Aka Mātuatua—School of Science, Te Whare Wānanga o Waikato—University of Waikato, Private Bag 3105, Hamilton 3240, Aotearoa, New Zealand
| |
Collapse
|
3
|
Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol 2021; 650:215-236. [PMID: 33867023 DOI: 10.1016/bs.mie.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rare-earth elements (REEs) were recently discovered to be biologically significant. The finding was originally made with the methanol dehydrogenase XoxF, which depends on REEs for its activity, and reports of lanthanide-utilizing bacteria have since expanded. Environmental proteomics allows the identification of proteins specifically induced by the presence of lanthanides or can provide insights into the preferred use of lanthanide-dependent and -independent isoenzymes, for example. Here we describe protocols for the growth and subsequent mass spectrometry-based proteome analysis of bacteria obtained from controlled artificial media and from the phyllosphere of the model plant Arabidopsis thaliana. In addition, the use of inductively coupled plasma mass spectrometry (ICP-MS) is described for the quantification of REEs in biological samples.
Collapse
|
4
|
Cultivation and characterization of snowbound microorganisms from the South Pole. Extremophiles 2021; 25:159-172. [PMID: 33590336 DOI: 10.1007/s00792-021-01218-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
Little is known about microbial ecosystems of interior Antarctica, if indeed such ecosystems exist. Although considerable research has assessed microorganisms indigenous to coastal regions of Antarctica, particularly their lakes, ponds, and soils, to our knowledge only one characterized bacterium, a strain of Pseudomonas, has been isolated from South Pole ice or snow. Metagenomic community analyses described in this work and elsewhere reveal that a diversity of bacteria exists in inland polar snows, yet attempts to culture and characterize these microbes from this extreme environment have been few to date. In this molecular and culture-dependent investigation of the microbiology of inland Antarctica, we enriched and isolated two new strains of bacteria and one strain of yeast (Fungi) from South Pole snow samples. The bacteria were of the genera Methylobacterium and Sphingomonas, and the yeast grouped with species of Naganishia (class Tremellocytes). In addition to phylogenetic analyses, characterization of these isolates included determinations of cell morphology, growth as a function of temperature, salinity tolerance, and carbon and energy source versatility. All organisms were found to be cold-adapted, and the yeast strain additionally showed considerable halotolerance. These descriptions expand our understanding of the diversity and metabolic activities of snowbound microorganisms of interior Antarctica.
Collapse
|
5
|
Grossi CEM, Fantino E, Serral F, Zawoznik MS, Fernandez Do Porto DA, Ulloa RM. Methylobacterium sp. 2A Is a Plant Growth-Promoting Rhizobacteria That Has the Potential to Improve Potato Crop Yield Under Adverse Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:71. [PMID: 32127795 PMCID: PMC7038796 DOI: 10.3389/fpls.2020.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/17/2020] [Indexed: 05/11/2023]
Abstract
A Gram-negative pink-pigmented bacillus (named 2A) was isolated from Solanum tuberosum L. cv. Desirée plants that were strikingly more developed, presented increased root hair density, and higher biomass than other potato lines of the same age. The 16S ribosomal DNA sequence, used for comparative gene sequence analysis, indicated that strain 2A belongs to the genus Methylobacterium. Nucleotide identity between Methylobacterium sp. 2A sequenced genome and the rest of the species that belong to the genus suggested that this species has not been described so far. In vitro, potato plants inoculated with Methylobacterium sp. 2A had a better performance when grown under 50 mM NaCl or when infected with Phytophthora infestans. We inoculated Methylobacterium sp. 2A in Arabidopsis thaliana roots and exposed these plants to salt stress (75 mM NaCl). Methylobacterium sp. 2A-inoculated plants, grown in control or salt stress conditions, displayed a higher density of lateral roots (p < 0.05) compared to noninoculated plants. Moreover, under salt stress, they presented a higher number of leaves and larger rosette diameter. In dual confrontation assays, Methylobacterium sp. 2A displayed biocontrol activity against P. infestans, Botrytis cinerea, and Fusarium graminearum, but not against Rhizoctonia solani, and Pythium dissotocum. In addition, we observed that Methylobacterium sp. 2A diminished the size of necrotic lesions and reduced chlorosis when greenhouse potato plants were infected with P. infestans. Methylobacterium sp. 2A produces indole acetic acid, solubilizes mineral phosphate and is able to grow in a N2 free medium. Whole-genome sequencing revealed metabolic pathways associated with its plant growth promoter capacity. Our results suggest that Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria (PGPR) that can alleviate salt stress, and restricts P. infestans infection in potato plants, emerging as a potential strategy to improve crop management.
Collapse
Affiliation(s)
- Cecilia Eugenia María Grossi
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Elisa Fantino
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Serral
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Myriam Sara Zawoznik
- Cátedra de Química Biológica Vegetal, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Darío Augusto Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita María Ulloa
- Laboratorio de Transducción de Señales en Plantas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Sci Rep 2019; 9:4248. [PMID: 30862918 PMCID: PMC6414531 DOI: 10.1038/s41598-019-41043-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Lanthanide (Ln) elements are utilized as cofactors for catalysis by XoxF-type methanol dehydrogenases (MDHs). A primary assumption is that XoxF enzymes produce formate from methanol oxidation, which could impact organisms that require formaldehyde for assimilation. We report genetic and phenotypic evidence showing that XoxF1 (MexAM1_1740) from Methylobacterium extorquens AM1 produces formaldehyde, and not formate, during growth with methanol. Enzyme purified with lanthanum or neodymium oxidizes formaldehyde. However, formaldehyde oxidation via 2,6-dichlorophenol-indophenol (DCPIP) reduction is not detected in cell-free extracts from wild-type strain methanol- and lanthanum-grown cultures. Formaldehyde activating enzyme (Fae) is required for Ln methylotrophic growth, demonstrating that XoxF1-mediated production of formaldehyde is essential. Addition of exogenous lanthanum increases growth rate with methanol by 9–12% but does not correlate with changes to methanol consumption or formaldehyde accumulation. Transcriptomics analysis of lanthanum methanol growth shows upregulation of xox1 and downregulation of mxa genes, consistent with the Ln-switch, no differential expression of formaldehyde conversion genes, downregulation of pyrroloquinoline quinone (PQQ) biosynthesis genes, and upregulation of fdh4 formate dehydrogenase (FDH) genes. Additionally, the Ln-dependent ethanol dehydrogenase ExaF reduces methanol sensitivity in the fae mutant strain when lanthanides are present, providing evidence for the capacity of an auxiliary role for ExaF during Ln-dependent methylotrophy.
Collapse
|
7
|
Green PN, Ardley JK. Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. Int J Syst Evol Microbiol 2018; 68:2727-2748. [PMID: 30024371 DOI: 10.1099/ijsem.0.002856] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Methylobacterium, when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus. Additionally, several strains are described as belonging to Methylobacterium, but nodulate legumes and in some cases are unable to utilize methanol as a sole carbon source. This study reviews and discusses the current taxonomic status of Methylobacterium. Based on 16S rRNA gene, multi-locus sequence analysis, genomic and phenotypic data, the 52 Methylobacterium species can no longer be retained in one genus. Consequently, a new genus, Methylorubrum gen. nov., is proposed to accommodate 11 species previously held in Methylobacterium. The reclassified species names are proposed as: Methylorubrum aminovorans comb. nov. (type strain TH-15T=NCIMB 13343T=DSM 8832T), Methylorubrum extorquens comb. nov. (type strain NCIMB 9399T=DSM 1337T), Methylorubrum podarium comb. nov. (type strain FM4T=NCIMB 14856T=DSM 15083T), Methylorubrum populi comb. nov. (type strain BJ001T=NCIMB 13946T=ATCC BAA-705T), Methylorubrum pseudosasae comb. nov. (type strain BL44T=ICMP 17622T=NBRC 105205T), Methylorubrum rhodesianum comb. nov. (type strain NCIMB 12249T=DSM 5687T), Methylorubrum rhodinum comb. nov. (type strain NCIMB 9421T=DSM 2163T), Methylorubrum salsuginis comb. nov. (type strain MRT=NCIMB 14847T=NCCB 100140T), Methylorubrum suomiense comb. nov. (type strain F20T=NCIMB 13778T=DSM 14458T), Methylorubrum thiocyanatum comb. nov. (type strain ALL/SCN-PT=NCIMB 13651T=DSM 11490T) and Methylorubrum zatmanii comb. nov. (type strain NCIMB 12243T=DSM 5688T). The taxonomic position of several remaining species is also discussed.
Collapse
Affiliation(s)
- Peter N Green
- 1NCIMB, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, UK
| | - Julie K Ardley
- 2School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| |
Collapse
|
8
|
Draft Genome Sequence of Methylobacterium sp. Strain ARG-1 Isolated from the White-Rot Fungus Armillaria gallica. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00398-16. [PMID: 27257212 PMCID: PMC4891636 DOI: 10.1128/genomea.00398-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylobacterium sp. strain ARG-1 was isolated from a cell culture of hyphal tips of the white-rot fungus Armillaria gallica. We describe here the sequencing, assembly, and annotation of its genome, confirming the presence of genes involved in methylotrophy. This is the first genome announcement of a strain of Methylobacterium associated with A. gallica.
Collapse
|
9
|
Osawa A, Kaseya Y, Koue N, Schrader J, Knief C, Vorholt JA, Sandmann G, Shindo K. 4-[2-O-11Z-Octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid and 4-[2-O-9Z-hexadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid: new C30-carotenoids produced by Methylobacterium. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci Rep 2015; 5:9719. [PMID: 25900611 PMCID: PMC5386246 DOI: 10.1038/srep09719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/17/2015] [Indexed: 01/25/2023] Open
Abstract
Recently, microbe-plant interactions at the above-ground parts have attracted great attention. Here we describe nitrogen metabolism and regulation of autophagy in the methylotrophic yeast Candida boidinii, proliferating and surviving on the leaves of Arabidopsis thaliana. After quantitative analyses of yeast growth on the leaves of A. thaliana with the wild-type and several mutant yeast strains, we showed that on young leaves, nitrate reductase (Ynr1) was necessary for yeast proliferation, and the yeast utilized nitrate as nitrogen source. On the other hand, a newly developed methylamine sensor revealed appearance of methylamine on older leaves, and methylamine metabolism was induced in C. boidinii, and Ynr1 was subjected to degradation. Biochemical and microscopic analysis of Ynr1 in vitro during a shift of nitrogen source from nitrate to methylamine revealed that Ynr1 was transported to the vacuole being the cargo for biosynthetic cytoplasm-to-vacuole targeting (Cvt) pathway, and degraded. Our results reveal changes in the nitrogen source composition for phyllospheric yeasts during plant aging, and subsequent adaptation of the yeasts to this environmental change mediated by regulation of autophagy.
Collapse
|
11
|
Madhaiyan M, Poonguzhali S. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. Int J Syst Evol Microbiol 2014; 64:2376-2384. [DOI: 10.1099/ijs.0.057232-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Two strains of Gram-negative, methylotrophic bacteria, isolated because of their abilities to promote plant growth, were subjected to a polyphasic taxonomic study. The isolates were strictly aerobic, motile, pink-pigmented, facultatively methylotrophic, non-spore-forming rods. The chemotaxonomic characteristics of the isolates included the presence of C18 : 1ω7c as the major cellular fatty acid. The DNA G+C contents of strains BL36T and BL47T were 69.4 and 69.8 mol%, respectively. 16S rRNA gene sequence analysis of strains BL36T and BL47T placed them under the genus
Methylobacterium,
with the pairwise sequence similarity between them and the type strains of closely related species ranging from 97.2 to 99.0 %. On the basis of their phenotypic and phylogenetic distinctiveness and the results of DNA–DNA hybridization analysis, the isolates represent two novel species within the genus
Methylobacterium
, for which the names Methylobacterium pseudosasicola sp. nov. (type strain BL36T = NBRC 105203T = ICMP 17621T) and Methylobacterium phyllostachyos sp. nov. (type strain BL47T = NBRC 105206T = ICMP 17619T) are proposed.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore 641 003, Tamilnadu, India
| | - Selvaraj Poonguzhali
- Department of Agricultural Microbiology, Tamilnadu Agricultural University, Coimbatore 641 003, Tamilnadu, India
| |
Collapse
|
12
|
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013; 4:268. [PMID: 24046766 PMCID: PMC3763247 DOI: 10.3389/fmicb.2013.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth Bayreuth, Germany
| | | |
Collapse
|
13
|
Tani A, Sahin N. Methylobacterium
haplocladii sp. nov. and
Methylobacterium
brachythecii sp. nov., isolated from bryophytes. Int J Syst Evol Microbiol 2013; 63:3287-3292. [DOI: 10.1099/ijs.0.048215-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pink-pigmented, facultatively methylotrophic bacteria, strains 87eT and 99bT, were isolated from the bryophytes Haplocladium microphyllum and Brachythecium plumosum, respectively. The cells of both strains were Gram-reaction-negative, motile, non-spore-forming rods. On the basis of 16S rRNA gene sequence similarity, strains 87eT and 99bT were found to be related to
Methylobacterium organophilum
ATCC 27886T (97.1 % and 97.7 %, respectively). Strains 87eT and 99bT showed highest 16S rRNA gene similarity to
Methylobacterium gnaphalii
23eT (98.3 and 99.0 %, respectively). The phylogenetic similarities to all other species of the genus
Methylobacterium
with validly published names were less than 97 %. Major cellular fatty acids of both strains were C18 : 1ω7c and C18 : 0. The results of DNA–DNA hybridization, phylogenetic analyses based on 16S rRNA and cpn60 gene sequences, fatty acid profiles, whole-cell matrix-assisted, laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains 87eT and 99bT from their phylogenetically closest relatives. We propose that strains 87eT and 99bT represent novel species within the genus
Methylobacterium
, for which the names
Methylobacterium
haplocladii sp. nov. (type strain 87eT = DSM 24195T = NBRC 107714T) and
Methylobacterium
brachythecii sp. nov. (type strain 99bT = DSM 24105T = NBRC 107710T) are proposed.
Collapse
Affiliation(s)
- Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University, 48170 Kotekli, Mugla, Turkey
| |
Collapse
|
14
|
Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 2013; 79:4895-905. [PMID: 23770907 DOI: 10.1128/aem.01087-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources.
Collapse
|
15
|
Schauer S, Kutschera U. Methylobacteria isolated from bryophytes and the 2-fold description of the same microbial species. PLANT SIGNALING & BEHAVIOR 2013; 8:e23091. [PMID: 23299423 PMCID: PMC3657004 DOI: 10.4161/psb.23091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 05/27/2023]
Abstract
On the surface of healthy land plants (embryophytes), numerous non-pathogenic bacteria have been discovered and described. Among these epiphytic microbes, pink-pigmented facultative methylotrophic microbes of the genus Methylobacterium are of special significance, because these microorganisms consume methanol emitted via the stomatal pores and secrete growth-promoting phytohormones. Methylobacterium funariae, Schauer and Kutschera 2011, a species isolated in our lab from the common cord moss, described as a nova species in this journal, was recently characterized for a second time as a "new taxon" under a different name, "M. bullatum." Based on a phylogenetic analysis, we show that these taxa are identical. In addition, we provide novel information on the exact cell size, and describe the correct type locality of this bacterial species, which was classified as a phytosymbiont. Finally, we discuss the hypothesis that certain methylobacteria may preferentially colonize bryophytes. With reference to our recent discovery that thalli of ferns form, like liverworts and moss protonemata, associations with methylobacteria, we argue that the haploid phase of cryptogames are preferred host organisms of these pink-pigmented microbial phytosymbionts.
Collapse
|
16
|
Wellner S, Lodders N, Glaeser SP, Kämpfer P. Methylobacterium trifolii sp. nov. and Methylobacterium thuringiense sp. nov., methanol-utilizing, pink-pigmented bacteria isolated from leaf surfaces. Int J Syst Evol Microbiol 2013; 63:2690-2699. [PMID: 23291886 DOI: 10.1099/ijs.0.047787-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three pink-pigmented, aerobic, Gram-stain-negative, rod-shaped and facultatively methylotrophic strains were isolated from the phyllosphere of Trifolium repens and Cerastium holosteoides. 16S rRNA gene sequence analysis support the affiliation of all strains to the genus Methylobacterium. The closest relatives of strains C34(T) and T5 were Methylobacterium gnaphalii 23e(T) (98.0 and 98.5 % sequence similarity, respectively) and Methylobacterium organophilum JCM 2833(T) (97.0 and 97.2 %, respectively). Strain TA73(T) showed the highest sequence similarities to Methylobacterium marchantiae JT1(T) and Methylobacterium bullatum F3.2(T) (both 97.9 %), followed by Methylobacterium phyllosphaerae CBMB27(T) and Methylobacterium brachiatum DSM 19569(T) (both 97.8 %), Methylobacterium cerastii C15(T) and Methylobacterium radiotolerans JCM 2831(T) (both 97.7 %). The major components in the fatty acid profiles were C18 : 1ω7c, C16 : 0 and one unknown fatty acid for strain TA73(T) and C18 : 1ω7c, C16 : 1ω7c/iso-C15 : 0 2-OH, C18 : 0 and C16 : 0 for strains C34(T) and T5. Physiological and biochemical analysis, including DNA-DNA hybridization, revealed clear differences between the investigated strains and their closest phylogenetic neighbours. DNA-DNA hybridization studies also showed high similarities between strains C34(T) and T5 (59.6-100 %). Therefore, the isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium trifolii sp. nov. (type strain TA73(T) = LMG 25778(T) = CCM 7786(T)) and Methylobacterium thuringiense sp. nov. (type strain C34(T) = LMG 25777(T) = CCM 7787(T)) are proposed.
Collapse
Affiliation(s)
- S Wellner
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - N Lodders
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - S P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - P Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| |
Collapse
|
17
|
High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 2012; 7:e40784. [PMID: 22808262 PMCID: PMC3395638 DOI: 10.1371/journal.pone.0040784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022] Open
Abstract
Methylobacterium species are ubiquitous α-proteobacteria that reside in the phyllosphere and are fed by methanol that is emitted from plants. In this study, we applied whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (WC-MS) to evaluate the diversity of Methylobacterium species collected from a variety of plants. The WC-MS spectrum was reproducible through two weeks of cultivation on different media. WC-MS spectrum peaks of M. extorquens strain AM1 cells were attributed to ribosomal proteins, but those were not were also found. We developed a simple method for rapid identification based on spectra similarity. Using all available type strains of Methylobacterium species, the method provided a certain threshold similarity value for species-level discrimination, although the genus contains some type strains that could not be easily discriminated solely by 16S rRNA gene sequence similarity. Next, we evaluated the WC-MS data of approximately 200 methylotrophs isolated from various plants with MALDI Biotyper software (Bruker Daltonics). Isolates representing each cluster were further identified by 16S rRNA gene sequencing. In most cases, the identification by WC-MS matched that by sequencing, and isolates with unique spectra represented possible novel species. The strains belonging to M. extorquens, M. adhaesivum, M. marchantiae, M. komagatae, M. brachiatum, M. radiotolerans, and novel lineages close to M. adhaesivum, many of which were isolated from bryophytes, were found to be the most frequent phyllospheric colonizers. The WC-MS technique provides emerging high-throughputness in the identification of known/novel species of bacteria, enabling the selection of novel species in a library and identification without 16S rRNA gene sequencing.
Collapse
|
18
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2012. [DOI: 10.1099/ijs.0.043240-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|