1
|
Creamer KE, Kudo Y, Moore BS, Jensen PR. Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microb Genom 2021; 7:000568. [PMID: 33979276 PMCID: PMC8209734 DOI: 10.1099/mgen.0.000568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt . Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9 . Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt -like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria.
Collapse
Affiliation(s)
- Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Present address: Frontier Research Institute for Interdisciplinary Sciences, Japan Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Contreras-Castro L, MartÍnez-GarcÍa S, Cancino-Diaz JC, Maldonado LA, HernÁndez-Guerrero CJ, MartÍnez-DÍaz SF, GonzÁlez-Acosta BÁ, Quintana ET. Marine Sediment Recovered Salinispora sp. Inhibits the Growth of Emerging Bacterial Pathogens and other Multi-Drug-Resistant Bacteria. Pol J Microbiol 2021; 69:321-330. [PMID: 33574861 PMCID: PMC7810121 DOI: 10.33073/pjm-2020-035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 11/05/2022] Open
Abstract
Marine obligate actinobacteria produce a wide variety of secondary metabolites with biological activity, notably those with antibiotic activity urgently needed against multi-drug-resistant bacteria. Seventy-five marine actinobacteria were isolated from a marine sediment sample collected in Punta Arena de La Ventana, Baja California Sur, Mexico. The 16S rRNA gene identification, Multi Locus Sequence Analysis, and the marine salt requirement for growth assigned seventy-one isolates as members of the genus Salinispora, grouped apart but related to the main Salinispora arenicola species clade. The ability of salinisporae to inhibit bacterial growth of Staphylococcus epidermidis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacer baumannii, Pseudomonas aeruginosa, and Enterobacter spp. was evaluated by cross-streaking plate and supernatant inhibition tests. Ten supernatants inhibited the growth of eight strains of S. epidermidis from patients suffering from ocular infections, two out of the eight showed growth inhibition on ten S. epidermidis strains from prosthetic joint infections. Also, it inhibited the growth of the remaining six multi-drug-resistant bacteria tested. These results showed that some Salinispora strains could produce antibacterial compounds to combat bacteria of clinical importance and prove that studying different geographical sites uncovers untapped microorganisms with metabolic potential.
Collapse
Affiliation(s)
- Luis Contreras-Castro
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Sergio MartÍnez-GarcÍa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Juan C Cancino-Diaz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - Luis A Maldonado
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Claudia J HernÁndez-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - Sergio F MartÍnez-DÍaz
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - BÁrbara GonzÁlez-Acosta
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, Baja California Sur, México
| | - Erika T Quintana
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
3
|
Kim H, Kim S, Kim M, Lee C, Yang I, Nam SJ. Bioactive natural products from the genus Salinospora: a review. Arch Pharm Res 2020; 43:1230-1258. [PMID: 33237436 DOI: 10.1007/s12272-020-01288-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022]
Abstract
Actinomycetes are an important source for bioactive secondary metabolites. Among them, the genus Salinispora is one of the first salt obligatory marine species worldwide and is typically found in various types of substrates in tropical and subtropical marine environments including sediments and marine organisms. This genus produces a wide range of chemical scaffolds and bioactive compounds such as lomaiviticins, cyclomarins, rifamycins, salinaphthoquinones, and salinosporamides. This review arranged Salinispora derived secondary metabolites according to the three species that comprise the genus. Moreover, muta- and semi-synthesis analogs derived from salinosporamide were also described in this review.
Collapse
Affiliation(s)
- Haerin Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sohee Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Minju Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Chaeyoung Lee
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Pusan, 49112, Korea.
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
4
|
Román-Ponce B, Millán-Aguiñaga N, Guillen-Matus D, Chase AB, Ginigini JGM, Soapi K, Feussner KD, Jensen PR, Trujillo ME. Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitiensis sp. nov., and emended description of the genus Salinispora. Int J Syst Evol Microbiol 2020; 70:4668-4682. [PMID: 32701422 DOI: 10.1099/ijsem.0.004330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten representative actinobacterial strains isolated from marine sediments collected worldwide were studied to determine their taxonomic status. The strains were previously identified as members of the genus Salinispora and shared >99 % 16S rRNA gene sequence similarity to the three currently recognized Salinispora species. Comparative genomic analyses resulted in the delineation of six new species based on average nucleotide identity and digital DNA-DNA hybridization values below 95 and 70 %, respectively. The species status of the six new groups was supported by a core-genome phylogeny reconstructed from 2106 orthologs detected in 118 publicly available Salinispora genomes. Chemotaxonomic and physiological studies were used to complete the phenotypic characterization of the strains. The fatty acid profiles contained the major components iso-C16 : 0, C15 : 0, iso-17 : 0 and anteiso C17 : 0. Galactose and xylose were common in all whole-sugar patterns but differences were found between the six groups of strains. Polar lipid compositions were also unique for each species. Distinguishable physiological and biochemical characteristics were also recorded. The names proposed are Salinispora cortesiana sp. nov., CNY-202T (=DSM 108615T=CECT 9739T); Salinispora fenicalii sp. nov., CNT-569T (=DSM 108614T=CECT 9740T); Salinispora goodfellowii sp. nov., CNY-666T (=DSM 108616T=CECT 9738T); Salinispora mooreana sp. nov., CNT-150T (=DSM 45549T=CECT 9741T); Salinispora oceanensis sp. nov., CNT-138T (=DSM 45547T=CECT 9742T); and Salinispora vitiensis sp. nov., CNT-148T (=DSM 45548T=CECT 9743T).
Collapse
Affiliation(s)
- Brenda Román-Ponce
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalie Millán-Aguiñaga
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Dulce Guillen-Matus
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Alexander B Chase
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Joape G M Ginigini
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Katy Soapi
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Klaus D Feussner
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Ng ZY, Fang BZ, Li WJ, Tan GYA. Marinitenerispora sediminis gen. nov., sp. nov., a member of the family Nocardiopsaceae isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:3031-3040. [PMID: 31310190 DOI: 10.1099/ijsem.0.003587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three novel actinobacterial strains, designated as TPS16T, TPS81 and TPS83, were isolated from a sample of marine sediment collected from Tioman Island, Malaysia. The strains formed abundant branched substrate mycelia without fragmentation along with production of blue spores and blue diffusible pigment on soybean meal agar. The strains could grow at pH ranging from pH 6 to 12 and in 0-8 % (w/v) NaCl. Cell-wall hydrolysis showed the presence of meso-diaminopimelic acid. The strains were closely related to Marinactinospora thermotolerans SCSIO 00652T (97.60 %) and Marinactinospora endophytica YIM 690053T (96.87 %) based on phylogenetic analysis of 16S rRNA gene sequences. Multilocus sequence analysis including gyrB, recA and rpoB genes further confirmed that strain TPS16T represented a distinct branch within the family Nocardiopsaceae. The predominant menaquinones were MK-11(H2), MK-10(H2), MK-11(H4) and MK-10(H4), while the major fatty acids were found to be iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and C18 : 1ω9c. Genome sequencing revealed genome sizes of approximately 6 Mb and G+C contents of 73.8 mol%. A new genus, Marinitenerispora gen. nov., is proposed within the family Nocardiopsaceae based on polyphasic data and the type species is Marinitenerispora sediminis gen. nov., sp. nov. The type strain is TPS16T (=DSM 46825T=TBRC 5138T).
Collapse
Affiliation(s)
- Zoe Yi Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat Sen University, Guangzhou 510275, PR China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), 51900 Zhuhai, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat Sen University, Guangzhou 510275, PR China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), 51900 Zhuhai, PR China
| | - Geok Yuan Annie Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Selective isolation and characterisation of novel members of the family Nocardiopsaceae and other actinobacteria from a marine sediment of Tioman Island. Antonie van Leeuwenhoek 2018; 111:727-742. [DOI: 10.1007/s10482-018-1042-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/06/2018] [Indexed: 11/26/2022]
|
7
|
Letzel AC, Li J, Amos GCA, Millán-Aguiñaga N, Ginigini J, Abdelmohsen UR, Gaudêncio SP, Ziemert N, Moore BS, Jensen PR. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 2017; 19:3660-3673. [PMID: 28752948 DOI: 10.1111/1462-2920.13867] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Comparative genomics is providing new opportunities to address the diversity and distributions of genes encoding the biosynthesis of specialized metabolites. An analysis of 119 genome sequences representing three closely related species of the marine actinomycete genus Salinispora reveals extraordinary biosynthetic diversity in the form of 176 distinct biosynthetic gene clusters (BGCs) of which only 24 have been linked to their products. Remarkably, more than half of the BGCs were observed in only one or two strains, suggesting they were acquired relatively recently in the evolutionary history of the genus. These acquired gene clusters are concentrated in specific genomic islands, which represent hot spots for BGC acquisition. While most BGCs are stable in terms of their chromosomal position, others migrated to different locations or were exchanged with unrelated gene clusters suggesting a plug and play type model of evolution that provides a mechanism to test the relative fitness effects of specialized metabolites. Transcriptome analyses were used to address the relationships between BGC abundance, chromosomal position and product discovery. The results indicate that recently acquired BGCs can be functional and that complex evolutionary processes shape the micro-diversity of specialized metabolism observed in closely related environmental bacteria.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jing Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Gregory C A Amos
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California 22800, Mexico
| | - Joape Ginigini
- Institute of Applied Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Fiji
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Germany.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Susana P Gaudêncio
- Department of Chemistry, REQUIMTE, LAQV and UCIBIO, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica 2529-516, Portugal
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Interfaculty Institute of Microbiology and Infection Medicine Tuübingen, University of Tuübingen, Auf der Morgenstelle 28, Tuübingen 72076, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel AC, Rouse GW, Jensen PR. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564. [PMID: 28620214 PMCID: PMC5472633 DOI: 10.1038/s41598-017-02845-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
Bacteria represent the most genetically diverse kingdom of life. While great progress has been made in describing this diversity, it remains difficult to identify the phylogenetic and ecological characteristics that delineate groups of bacteria that possess species-like properties. One major challenge associated with species delineations is that not all shared genes have the same evolutionary history, and thus the choice of loci can have a major impact on phylogenetic reconstruction. Sequencing the genomes of large numbers of closely related strains provides new opportunities to distinguish ancestral from acquired alleles and assess the effects of recombination on phylogenetic inference. Here we analyzed the genomes of 119 strains of the marine actinomycete genus Salinispora, which is currently comprised of three named species that share 99% 16S rRNA gene sequence identity. While 63% of the core genome showed evidence of recombination, this had no effect on species-level phylogenomic resolution. Recombination did however blur intra-species relationships and biogeographic resolution. The genome-wide average nucleotide identity provided a new perspective on Salinispora diversity, revealing as many as seven new species. Patterns of orthologous group distributions reveal a genetic basis to delineation the candidate taxa and insight into the levels of genetic cohesion associated with bacterial species.
Collapse
Affiliation(s)
- Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Universidad Autónoma de Baja California. Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Krystle L Chavarria
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Juan A Ugalde
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bella, Santiago, Chile
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Greg W Rouse
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States. .,Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.
| |
Collapse
|
9
|
Prieto-Davó A, Dias T, Gomes SE, Rodrigues S, Parera-Valadez Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudêncio SP. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential. Front Microbiol 2016; 7:1594. [PMID: 27774089 PMCID: PMC5053986 DOI: 10.3389/fmicb.2016.01594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.
Collapse
Affiliation(s)
- Alejandra Prieto-Davó
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Tiago Dias
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisbon, Portugal
| | - Sara Rodrigues
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Yessica Parera-Valadez
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ilda Santos-Sanches
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Susana P Gaudêncio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
10
|
Jensen PR, Moore BS, Fenical W. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 2015; 32:738-51. [PMID: 25730728 PMCID: PMC4414829 DOI: 10.1039/c4np00167b] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review covers the initial discovery of the marine actinomycete genus Salinispora through its development as a model for natural product research. A focus is placed on the novel chemical structures reported with reference to their biological activities and the synthetic and biosynthetic studies they have inspired. The time line of discoveries progresses from more traditional bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target the products of specific biosynthetic gene clusters. This overview exemplifies the extraordinary biosynthetic diversity that can emanate from a narrowly defined genus and supports future efforts to explore marine taxa in the search for novel natural products.
Collapse
Affiliation(s)
- Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA.
| | | | | |
Collapse
|
11
|
LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar Drugs 2015; 13:249-66. [PMID: 25574739 PMCID: PMC4306935 DOI: 10.3390/md13010249] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023] Open
Abstract
An LC-MS-based metabolomics approach was used to characterise the variation in secondary metabolite production due to changes in the salt content of the growth media as well as across different growth periods (incubation times). We used metabolomics as a tool to investigate the production of rifamycins (antibiotics) and other secondary metabolites in the obligate marine actinobacterial species Salinispora arenicola, isolated from Great Barrier Reef (GBR) sponges, at two defined salt concentrations and over three different incubation periods. The results indicated that a 14 day incubation period is optimal for the maximum production of rifamycin B, whereas rifamycin S and W achieve their maximum concentration at 29 days. A "chemical profile" link between the days of incubation and the salt concentration of the growth medium was shown to exist and reliably represents a critical point for selection of growth medium and harvest time.
Collapse
|
12
|
Fuerst JA. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 2014; 98:7331-47. [DOI: 10.1007/s00253-014-5861-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
|
13
|
Bose U, Hodson MP, Shaw PN, Fuerst JA, Hewavitharana AK. Two Peptides, Cycloaspeptide A and Nazumamide A from a Sponge Associated Marine Actinobacterium Salinispora sp. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are a major component of benthic communities and act as a reservoir for microbial species. In terms of biomass, they are the richest source of secondary metabolite production, with the potential to influence both benthic and pelagic systems. In most cases it is the sponge-associated microbes that account for many of the secondary metabolites assigned to the host. Here we report the occurrence of cycloaspeptide A, a fungus-derived cyclic peptide, in a culturable bacterium Salinispora arenicola. We have also identified nazumamide A, a sponge-derived linear tetrapeptide currently used as a thrombin inhibitor, in Salinispora pacifica. Their structures were determined using an integrated approach consisting of: (1) HPLC-UV-Vis-QToF-MS analysis with multimode ionization (ESI and APCI) and fast polarity switching; (2) database searching and matching of monoisotopic masses, retention times, mass spectra of the precursor and product ions of the compounds of interest and the authentic reference standards thereof.
Collapse
Affiliation(s)
- Utpal Bose
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark P. Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - P. Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
14
|
Bose U, Hewavitharana AK, Vidgen ME, Ng YK, Shaw PN, Fuerst JA, Hodson MP. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity. PLoS One 2014; 9:e91488. [PMID: 24621594 PMCID: PMC3951395 DOI: 10.1371/journal.pone.0091488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 12/23/2022] Open
Abstract
Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology.
Collapse
Affiliation(s)
- Utpal Bose
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Miranda E. Vidgen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yi Kai Ng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - P. Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark P. Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
Bose U, Hodson MP, Shaw PN, Fuerst JA, Hewavitharana AK. Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin. Biomed Chromatogr 2014; 28:1163-6. [PMID: 24474532 DOI: 10.1002/bmc.3138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/16/2013] [Accepted: 12/28/2013] [Indexed: 11/05/2022]
Abstract
Forty-five strains from two different species (Salinispora arenicola and Salinispora pacifica) were isolated from three different marine sponge species in the Great Barrier Reef region of Australia. We found that two of the strains of Salinispora arenicola (MV0335 and MV0029) produced mevinolin, a fungus-derived cholesterol-lowering agent. Compound structure was determined using an integrated approach: (a) high performance liquid chromatography-quadrupole time-of-flight-mass spectrometric analysis with multimode ionization (electrospray ionization and atmospheric pressure chemical ionization) and fast polarity switching; and (b) database searching and matching of monoisotopic masses, retention times and mass spectra of the precursor and product ions of the compounds of interest and the authentic reference standards thereof.
Collapse
Affiliation(s)
- Utpal Bose
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
16
|
Salinispora arenicola from temperate marine sediments: new intra-species variations and atypical distribution of secondary metabolic genes. Antonie van Leeuwenhoek 2013; 105:207-19. [DOI: 10.1007/s10482-013-0067-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
|
17
|
Izumi H, Sagulenko E, Webb RI, Fuerst JA. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie van Leeuwenhoek 2013; 104:533-46. [DOI: 10.1007/s10482-013-0003-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
|
18
|
Ng YK, Hewavitharana AK, Webb R, Shaw PN, Fuerst JA. Developmental cycle and pharmaceutically relevant compounds of Salinispora actinobacteria isolated from Great Barrier Reef marine sponges. Appl Microbiol Biotechnol 2012; 97:3097-108. [DOI: 10.1007/s00253-012-4479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/16/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|