1
|
Shibayama K, Miyazaki Y, Ikeda M, Yamaguchi K, Inaba S, Yamazaki A. Starmerella kisarazuensis f.a., sp. nov., a novel yeast isolated from Trifolium pratense flowers. Int J Syst Evol Microbiol 2024; 74. [PMID: 38284408 DOI: 10.1099/ijsem.0.006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Three yeast isolates, NBRC 115909T, NBRC 115910 and NBRC 116270, were isolated from Trifolium pratense (red clover) flowers collected from Kisarazu, Chiba, Japan. Analysis of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions revealed that these isolates represent a single novel species within the genus Starmerella. Also, no ascospore formation was observed. The yeast isolates were closely related to Starmerella vitae UWOPS 00-107.2T and Starmerella bombi NRRL Y-17081T. They differed from S. vitae, the most closely related species with a validly published name, by ten nucleotide substitutions with two gaps in the D1/D2 domains and 20 nucleotide substitutions in the ITS region. Moreover, the three isolates exhibited distinct phenotypic characteristics from the closely related species. Therefore, we suggest that these three isolates represent a novel species, designated as Starmerella kisarazuensis f.a., sp. nov. The holotype is NBRC 115909T (isotype: CBS 18485T).
Collapse
Affiliation(s)
- Kaito Shibayama
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yumiko Miyazaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mai Ikeda
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kaoru Yamaguchi
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeki Inaba
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-49-10 Nishihara, Shibuya, Tokyo 151-0066, Japan
| | - Atsushi Yamazaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
2
|
Zhou R, Song Q, Xia H, Song N, Yang Q, Zhang X, Yao L, Yang S, Dai J, Chen X. Isolation and Identification of Non- Saccharomyces Yeast Producing 2-Phenylethanol and Study of the Ehrlich Pathway and Shikimate Pathway. J Fungi (Basel) 2023; 9:878. [PMID: 37754986 PMCID: PMC10532961 DOI: 10.3390/jof9090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
2-phenylethanol (2-PE) has been widely utilized as an aromatic additive in various industries, including cosmetics, beer, olive oil, tea, and coffee, due to its rose-honey-like aroma. However, no reports have investigated the production of 2-PE by Starmerella bacillaris. Here, S. bacillaris (syn., Candida zemplinina, and named strain R5) was identified by analysis of morphology, physiology and biochemistry, and 26S rRNA and ITS gene sequence. Then, based on the analysis of whole-genome sequencing and comparison with the KEGG database, it was inferred that strain R5 could synthesize 2-PE from L-phe or glucose through the Ehrlich pathway or shikimate pathway. For further verification of the 2-PE synthesis pathway, strain R5 was cultured in M3 (NH4+), M3 (NH4+ + Phe), and M3 (Phe) medium. In M3 (Phe) medium, the maximum concentration of 2-PE reached 1.28 g/L, which was 16-fold and 2.29-fold higher than that in M3 (NH4+) and M3 (Phe + NH4+) media, respectively. These results indicated that 2-PE could be synthesized by strain R5 through the shikimate pathway or Ehrlich pathway, and the biotransformation from L-phe to 2-PE was more efficient than that from glucose. The qRT-PCR results suggested that compared to M3 (Phe + NH4+) medium, the mRNA expression levels of YAT were 124-fold and 86-fold higher in M3 (Phe) and M3 (NH4+) media, respectively, indicating that the transport of L-phe was inhibited when both NH4+ and Phe were present in the medium. In the M3 (Phe) and M3 (Phe + NH4+) media, the mRNA expression level of ADH5 was higher than PDC, hisC, GOT1, and YAT, and it was 2.6 times higher and 2.48 times higher, respectively, compared to the M3 (NH4+) medium, revealing that the key gene catalyzing the dehydrogenation of benzaldehyde to 2-PE is ADH5. Furthermore, strain R5 exhibits tolerance to high concentrations of 2-PE, reaching 3 g/L, which conferred an ideal tolerance to 2-PE. In summary, the synthesis pathway of 2-PE, mainly for the Ehrlich pathway, was proved for the first time in S. bacillaris, which had not been previously explored and provided a basis for non-Saccharomyces yeast-producing 2-PE and its applications.
Collapse
Affiliation(s)
- Rong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qingyi Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Huili Xia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| |
Collapse
|
3
|
Csoma H, Kállai Z, Czentye K, Sipiczki M. Starmerella lactis-condensi, a yeast that has adapted to the conditions in the oenological environment. Int J Food Microbiol 2023; 401:110282. [PMID: 37329632 DOI: 10.1016/j.ijfoodmicro.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The yeast Starmerella (Candida) lactis-condensi is considered a food contaminant microorganism. The aim of our research was to determine why St. lactis-condensi could become the dominant species of Essences, the top sweet wine speciality of Tokaj wine region in Hungary. We investigated the physiological properties of these yeasts based on parameters that may influence their ability to selectively proliferate and persist during maturation in wines with very high sugar content. These include glucose and fructose, alcohol, and sulphur tolerance. Our studies have shown that St. lactis-condensi is a fructophilic yeast that is able to adapt quickly to very high sugar concentrations (up to 500 g/L) in the Essences. The high glucose concentration inhibits its growth, as well as that of the St. bacillaris (Candida zemplinina) strains tested. The type and amount of sugars in the Essences, together with the sulphur and alcohol content, influence the composition of the dominant yeast biota. Analysis of (GTG)5 microsatellite in the nuclear genome and mtDNA-RFLP studies demonstrate that a diverse population of St. lactis-condensi occurs in the Tokaj wine region, in the Essences. This yeast species is characterised by both physiological and genetic biodiversity. GC-MS analysis of Essences colonised exclusively with these yeasts showed no deterioration in quality.
Collapse
Affiliation(s)
- Hajnalka Csoma
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary.
| | - Zoltán Kállai
- Research Institute for Viticulture and Oenology, Tarcal; Department of Oenological Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Czentye
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Di Nicolantonio L, Ferrati M, Cristino M, Peregrina DV, Zannotti M, Vitali LA, Ciancia SI, Giovannetti R, Ferraro S, Zara S, Di Valerio V, Cataldi A, Gigliobianco MR, Censi R, Di Martino P. Evaluation of Physicochemical and Microbial Properties of Extracts from Wine Lees Waste of Matelica’s Verdicchio and Their Applications in Novel Cosmetic Products. Antioxidants (Basel) 2023; 12:antiox12040816. [PMID: 37107191 PMCID: PMC10135395 DOI: 10.3390/antiox12040816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Wine lees are sediments deposited on the walls and bottom of barrels resulting from wine fermentation and mainly consist of yeasts. Saccharomyces cerevisiae extracts, rich in beneficial components for the skin, have already been used in cosmesis, while wine lees have not been well exploited by the cosmetics industry yet. The aim of this work was the full characterization of the wine lees from Verdicchio’s wine, with the aim to exploit it as a beneficial ingredient in new cosmetic products. After mapping the microbial composition of the sample waste, the parameters for the sonication extraction process were optimized and the physicochemical properties of the extract were analyzed. The efficiency of the aqueous extraction—and in particular the yeast cell lysis necessary for the release of proteins from the cell—was assessed by evaluating cell shape and size, and protein release, under scanning electron microscopy (SEM), dynamic light scattering (DLS) and Bradford’s protein assays. Thus, the total phenol content and antioxidant capacity of the supernatant recovered from native and sonicated lees were determined by Folin–Ciocalteu’s and spectrophotometric assays, respectively. To quantify the heavy metals and highlight the presence of microelements beneficial for the skin, inductively coupled plasma-mass spectrometry (ICP-MS) was applied. In vitro metabolic activity and cytotoxicity were tested on both HaCat keratinocytes and human gingival fibroblasts, showing that wine lees are safe for skin’s cells. The results show that sonicated lees appear to be more interesting than native ones as a consequence of the release of the active ingredients from the cells. Due to the high antioxidant capacity, content of beneficial elements for skin and an appropriate microbiologic profile, wine lees were included in five new solid cosmetic products and tested for challenge test, compatibility with human skin, sensory analysis, trans epidermal water loss (TEWL) and sebometry.
Collapse
Affiliation(s)
- Lucrezia Di Nicolantonio
- Cosmetology Laboratory, University of Camerino, 62032 Camerino, Italy
- Recusol Srl, 62032 Camerino, Italy
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| | | | | | - Marco Zannotti
- Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Agostino Vitali
- Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Sonia Ilaria Ciancia
- Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Rita Giovannetti
- Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Stefano Ferraro
- Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Susi Zara
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Valentina Di Valerio
- Department of Medicine and Aging Sciences, “G. d’ Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Maria Rosa Gigliobianco
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
- Correspondence:
| | - Roberta Censi
- Cosmetology Laboratory, University of Camerino, 62032 Camerino, Italy
- Recusol Srl, 62032 Camerino, Italy
| | - Piera Di Martino
- Recusol Srl, 62032 Camerino, Italy
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
5
|
Shen Y, Bai X, Zhou X, Wang J, Guo N, Deng Y. Whole-Genome Analysis of Starmerella bacillaris CC-PT4 against MRSA, a Non- Saccharomyces Yeast Isolated from Grape. J Fungi (Basel) 2022; 8:1255. [PMID: 36547588 PMCID: PMC9784136 DOI: 10.3390/jof8121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Starmerella bacillaris is often isolated from environments associated with grape and winemaking. S. bacillaris has many beneficial properties, including the ability to improve the flavor of wine, the production of beneficial metabolites, and the ability to biocontrol. S. bacillaris CC-PT4 (CGMCC No. 23573) was isolated from grape and can inhibit methicillin-resistant Staphylococcus aureus and adaptability to harsh environments. In this paper, the whole genome of S. bacillaris CC-PT4 was sequenced and bioinformatics analyses were performed. The S. bacillaris CC-PT4 genome was finally assembled into five scaffolds with a genome size of 9.45 Mb and a GC content of 39.5%. It was predicted that the strain contained 4150 protein-coding genes, of which two genes encoded killer toxin and one gene encoded lysostaphin. It also contains genes encoding F1F0-ATPases, Na(+)/H(+) antiporter, cation/H(+) antiporter, ATP-dependent bile acid permease, major facilitator superfamily (MFS) antiporters, and stress response protein, which help S. bacillaris CC-PT4 adapt to bile, acid, and other stressful environments. Proteins related to flocculation and adhesion have also been identified in the S. bacillaris CC-PT4 genome. Predicted by antiSMASH, two secondary metabolite biosynthesis gene clusters were found, and the synthesized metabolites may have antimicrobial effects. Furthermore, S. bacillaris CC-PT4 carried genes associated with pathogenicity and drug resistance. Overall, the whole genome sequencing and analysis of S. bacillaris CC-PT4 in this study provide valuable information for understanding the biological characteristics and further development of this strain.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiran Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanhong Deng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Abstract
Although beer is a widely used beverage in many cultures, there is a need for a new drinking alternative in the face of rising issues such as health concerns or weight problems. However, non-alcoholic and low-alcoholic beers (NABLAB) still have some sensory problems that have not been fully remedied today, such as “wort-like”/”potato-like” flavours or a lack of aroma. These defects are due to the lack of alcohol (and the lack of the aldehyde-reducing effect of alcohol fermentation), as well as production techniques. The use of new yeast strains that cannot ferment maltose—the foremost sugar in the wort—is highly promising to produce a more palatable and sustainable NABLAB product because production with these yeast strains can be performed with standard brewery equipment. In the scientific literature, it is clear that interest in the production of NABLAB has increased recently, and experiments have been carried out with maltose-negative yeast strains isolated from many different environments. This study describes maltose-negative yeasts and their aromatic potential for the production of NABLAB by comprehensively examining recent academic studies.
Collapse
|
7
|
Yurkov A, Alves A, Bai FY, Boundy-Mills K, Buzzini P, Čadež N, Cardinali G, Casaregola S, Chaturvedi V, Collin V, Fell JW, Girard V, Groenewald M, Hagen F, Hittinger CT, Kachalkin AV, Kostrzewa M, Kouvelis V, Libkind D, Liu X, Maier T, Meyer W, Péter G, Piątek M, Robert V, Rosa CA, Sampaio JP, Sipiczki M, Stadler M, Sugita T, Sugiyama J, Takagi H, Takashima M, Turchetti B, Wang QM, Boekhout T. Nomenclatural issues concerning cultured yeasts and other fungi: why it is important to avoid unneeded name changes. IMA Fungus 2021; 12:18. [PMID: 34256869 PMCID: PMC8278710 DOI: 10.1186/s43008-021-00067-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023] Open
Abstract
The unambiguous application of fungal names is important to communicate scientific findings. Names are critical for (clinical) diagnostics, legal compliance, and regulatory controls, such as biosafety, food security, quarantine regulations, and industrial applications. Consequently, the stability of the taxonomic system and the traceability of nomenclatural changes is crucial for a broad range of users and taxonomists. The unambiguous application of names is assured by the preservation of nomenclatural history and the physical organisms representing a name. Fungi are extremely diverse in terms of ecology, lifestyle, and methods of study. Predominantly unicellular fungi known as yeasts are usually investigated as living cultures. Methods to characterize yeasts include physiological (growth) tests and experiments to induce a sexual morph; both methods require viable cultures. Thus, the preservation and availability of viable reference cultures are important, and cultures representing reference material are cited in species descriptions. Historical surveys revealed drawbacks and inconsistencies between past practices and modern requirements as stated in the International Code of Nomenclature for Algae, Fungi, and Plants (ICNafp). Improper typification of yeasts is a common problem, resulting in a large number invalid yeast species names. With this opinion letter, we address the problem that culturable microorganisms, notably some fungi and algae, require specific provisions under the ICNafp. We use yeasts as a prominent example of fungi known from cultures. But viable type material is important not only for yeasts, but also for other cultivable Fungi that are characterized by particular morphological structures (a specific type of spores), growth properties, and secondary metabolites. We summarize potential proposals which, in our opinion, will improve the stability of fungal names, in particular by protecting those names for which the reference material can be traced back to the original isolate.
Collapse
Affiliation(s)
- Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany.
| | - Artur Alves
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3-1 Beichen West Road., Chaoyang District, Beijing, 100101, People's Republic of China
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, Phaff Yeast Culture Collection, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ul. 101, 1000, Ljubljana, Slovenia
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Serge Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
| | - Valérie Collin
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France
| | - Jack W Fell
- Emeritus Professor, Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Key Biscayne, FL, 33149, USA
| | - Victoria Girard
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI, 53726-4084, USA
| | - Aleksey V Kachalkin
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991, Moscow, Russia.,All-Russian Collection of Microorganisms (VKM), Skryabin Institute of Biochemistry and Physiology of Microorganisms (IBPM RAS), Russian Academy of Sciences, Prospect Nauki 5, 142290, Puschino, Russia
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Vassili Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701, Athens, Greece
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Rio Negro, Argentina
| | - Xinzhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3-1 Beichen West Road., Chaoyang District, Beijing, 100101, People's Republic of China
| | - Thomas Maier
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, 2006, Australia.,Westmead Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.,Westmead Hospital (Research and Education Network), Darcy Rd, Westmead, NSW, 2145, Australia
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, Budapest, H-1118, Hungary
| | - Marcin Piątek
- Department of Mycology, W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz ul. 46, 31-512, Kraków, Poland
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Jose Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Largo da Torre, 2825-149, Caparica, Portugal.,Departamento de Ciências da Vida, PYCC - Portuguese Yeast Culture Collection, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Largo da Torre, 2825-149, Caparica, Portugal
| | - Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, 4010, Hungary
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2 Chome-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Junta Sugiyama
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.,TechnoSuruga Laboratory Co., Ltd., 388-1, Nagasaki, Shimuzu, Shizuoka, 424-0065, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3-1 Beichen West Road., Chaoyang District, Beijing, 100101, People's Republic of China.,College of Life Sciences, Hebei University, 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, People's Republic of China
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 904 Science Park, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Genetic, Physiological, and Industrial Aspects of the Fructophilic Non-Saccharomyces Yeast Species, Starmerella bacillaris. FERMENTATION 2021. [DOI: 10.3390/fermentation7020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is a non-Saccharomyces yeast species, frequently found in enological ecosystems. Peculiar aspects of the genetics and metabolism of this yeast species, as well as potential industrial applications of isolated indigenous S. bacillaris strains worldwide, have recently been explored. In this review, we summarize relevant observations from studies conducted on standard laboratory and indigenous isolated S. bacillaris strains.
Collapse
|
9
|
Color Stabilization of Apulian Red Wines through the Sequential Inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Molecules 2021; 26:molecules26040907. [PMID: 33572140 PMCID: PMC7915498 DOI: 10.3390/molecules26040907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.
Collapse
|
10
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
11
|
Horváth BO, Sárdy DN, Kellner N, Magyar I. Effects of High Sugar Content on Fermentation Dynamics and Some Metabolites of Wine-Related Yeast Species Saccharomyces cerevisiae, S. uvarum and Starmerella bacillaris. Food Technol Biotechnol 2020; 58:76-83. [PMID: 32684791 PMCID: PMC7365345 DOI: 10.17113/ftb.58.01.20.6461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Starmerella bacillaris (synonym Candida zemplinina) is an important non-Saccharomyces yeast in winemaking with valuable oenological properties, accompanying Saccharomyces species in sweet wine fermentation, and has been suggested also for application as combined starter culture in dry or sweet wines. In this study, the major metabolites and nitrogen utilization of these yeasts are evaluated in the musts with high or extremely high sugar concentration. The change in the metabolic footprint of Saccharomyces cerevisiae, Saccharomyces uvarum and Starmerella bacillaris strains was compared when they were present as pure cultures in chemically defined grape juice medium with 220 and 320 g/L of sugar, to represent a fully matured and an overripe grape. Surprisingly, the extreme sugar concentration did not result in a considerable change in the rate of sugar consumption; only a shift of the sugar consumption curves could be noticed for all species, especially for Starmerella bacillaris. At the extreme sugar concentration, Starmerella bacillaris showed excellent glycerol production, moderate nitrogen demand together with a noticeable proline utilisation. The change in the overall metabolite pattern of Starmerella bacillaris allowed clear discrimination from the change of the Saccharomyces species. In this experiment, the adequacy of this non-Saccharomyces yeast for co-fermentation in juices with high sugar concentration is highlighted. Moreover, the results suggest that Starmerella bacillaris has a more active adaptation mechanism to extremely high sugar concentration.
Collapse
Affiliation(s)
- Borbála Oláhné Horváth
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Diána Nyitrainé Sárdy
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Nikolett Kellner
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| | - Ildikó Magyar
- Szent István University Faculty of Horticultural Science Department of Oenology, Ménesi út 45, 1118 Budapest, Hungary
| |
Collapse
|
12
|
Raymond Eder ML, Conti F, Bely M, Masneuf‐Pomarède I, Albertin W, Rosa AL. Vitis
species, vintage, and alcoholic fermentation do not drive population structure in
Starmerella bacillaris
(synonym
Candida zemplinina
) species. Yeast 2019; 36:411-420. [DOI: 10.1002/yea.3385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- María Laura Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| | - Francisco Conti
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| | - Marina Bely
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
| | - Isabelle Masneuf‐Pomarède
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
- Bordeaux Sciences Agro Gradignan France
| | - Warren Albertin
- ISVV, OEnology Research Unit EA 4577, USC 1366 INRAUniversité de Bordeaux Bordeaux France
- ENSCBPBordeaux INP Pessac France
| | - Alberto Luis Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS‐CONICET, Facultad de Ciencias QuímicasUniversidad Católica de Córdoba Córdoba Argentina
| |
Collapse
|
13
|
Draft Genome Sequence of the Candida zemplinina (syn., Starmerella bacillaris) Type Strain CBS 9494 [corrected]. Microbiol Resour Announc 2018; 7:MRA00872-18. [PMID: 30533866 PMCID: PMC6211350 DOI: 10.1128/mra.00872-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/29/2022] Open
Abstract
Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species. Starmerella bacillaris is an ascomycetous yeast ubiquitously present in grapes and fermenting grape musts. In this report, we present the draft genome sequence of the S. bacillaris type strain CBS 9494, isolated from sweet botrytized wines, which will contribute to the study of this genetically heterogeneous wine yeast species.
Collapse
|
14
|
Abstract
Candida stellata is an imperfect yeast of the genus Candida that belongs to the order Saccharomycetales, while phylum Ascomycota. C. stellata was isolated originally from a must overripe in Germany but is widespread in natural and artificial habitats. C. stellata is a yeast with a taxonomic history characterized by numerous changes; it is either a heterogeneous species or easily confused with other yeast species that colonize the same substrates. The strain DBVPG 3827, frequently used to investigate the oenological properties of C. stellata, was recently renamed as Starmerella bombicola, which can be easily confused with C. zemplinina or related species like C. lactis-condensi. Strains of C. stellata have been used in the processing of foods and feeds for thousands of years. This species, which is commonly isolated from grape must, has been found to be competitive and persistent in fermentation in both white and red wine in various wine regions of the world and tolerates a concentration of at least 9% (v/v) ethanol. Although these yeasts can produce spoilage, several studies have been conducted to characterize C. stellata for their ability to produce desirable metabolites for wine flavor, such as acetate esters, or for the presence of enzymatic activities that enhance wine aroma, such as β-glucosidase. This microorganism could also possess many interesting technological properties that could be applied in food processing. Exo and endoglucosidases and polygalactosidase of C. stellata are important in the degradation of β-glucans produced by Botrytis cinerea. In traditional balsamic vinegar production, C. stellata shapes the aromatic profile of traditional vinegar, producing ethanol from fructose and high concentrations of glycerol, succinic acid, ethyl acetate, and acetoin. Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 73–74% for Starmerella bombicola. Numerous studies have clearly proven that these macromolecules make multiple positive contributions to wine quality. Recent studies on C. stellata strains in wines made by co-fermentation with Saccharomyces cerevisiae have found that the aroma attributes of the individual strains were apparent when the inoculation protocol permitted the growth and activity of both yeasts. The exploitation of the diversity of biochemical and sensory properties of non-Saccharomyces yeast could be of interest for obtaining new products.
Collapse
|
15
|
González B, Vázquez J, Morcillo-Parra MÁ, Mas A, Torija MJ, Beltran G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 2018; 74:64-74. [DOI: 10.1016/j.fm.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
16
|
De Graeve M, De Maeseneire SL, Roelants SLKW, Soetaert W. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res 2018; 18:5049474. [DOI: 10.1093/femsyr/foy072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
17
|
Raymond Eder ML, Conti F, Rosa AL. Differences Between Indigenous Yeast Populations in Spontaneously Fermenting Musts From V. vinifera L. and V. labrusca L. Grapes Harvested in the Same Geographic Location. Front Microbiol 2018; 9:1320. [PMID: 29971059 PMCID: PMC6018209 DOI: 10.3389/fmicb.2018.01320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Yeast communities associated with Vitis vinifera L. ecosystems have been widely characterized. Less is known, however, about yeast communities present in grapes and fermenting musts from Vitis non-vinifera ecosystems. Moreover, there are no comparative studies concerning yeast communities in grapes from V. vinifera L. and non-vinifera Vitis species in vineyards from a shared terroir. In this work, we have used a culture-dependent strategy, phenotypic analyses, and molecular genotyping, to study the most representative yeast species present in spontaneously fermenting musts of grapes harvested from neighboring V. vinifera L. (cv. Malbec) and V. labrusca L. (cv. Isabella) vineyards. Phenotypic analyses of H2S production, ethanol tolerance and carbon utilization, on randomly selected strains of each Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae strains, as well as microsatellite genotyping of S. cerevisiae isolates from each the Malbec and Isabella grape musts, suggest that V. vinifera L. and V. labrusca L. ecosystems could harbor different yeast strain populations. Thus, microbial communities in exotic Vitis species may offer opportunities to look for unique yeast strains that could not be present in conventional V. vinifera L. ecosystems.
Collapse
Affiliation(s)
- María L Raymond Eder
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Francisco Conti
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba, Argentina
| |
Collapse
|
18
|
Chasseriaud L, Coulon J, Marullo P, Albertin W, Bely M. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide. Appl Microbiol Biotechnol 2018. [PMID: 29516146 DOI: 10.1007/s00253-018-8861-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.
Collapse
Affiliation(s)
- Laura Chasseriaud
- BioLaffort, 33100, Bordeaux, France. .,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.
| | | | - Philippe Marullo
- BioLaffort, 33100, Bordeaux, France.,EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| | - Warren Albertin
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France.,ENSCBP - Bordeaux INP, 16 avenue Pey Berland, 33607, Pessac Cedex, France
| | - Marina Bely
- EA 4577, Œnologie, Unité de Recherche Œnologie, University de Bordeaux, ISVV, 210 Chemin de Leysotte,, 33140, Villenave d'Ornon, Cedex, France
| |
Collapse
|
19
|
Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina. Int J Food Microbiol 2018; 266:14-20. [DOI: 10.1016/j.ijfoodmicro.2017.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023]
|
20
|
Englezos V, Giacosa S, Rantsiou K, Rolle L, Cocolin L. Starmerella bacillaris in winemaking: opportunities and risks. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Petruzzi L, Capozzi V, Berbegal C, Corbo MR, Bevilacqua A, Spano G, Sinigaglia M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front Microbiol 2017. [PMID: 28642742 PMCID: PMC5462979 DOI: 10.3389/fmicb.2017.00995] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Vittorio Capozzi
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Carmen Berbegal
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Maria R Corbo
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of FoggiaFoggia, Italy
| |
Collapse
|
22
|
Pinto L, Caputo L, Quintieri L, de Candia S, Baruzzi F. Efficacy of gaseous ozone to counteract postharvest table grape sour rot. Food Microbiol 2017; 66:190-198. [PMID: 28576368 DOI: 10.1016/j.fm.2017.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
This work aims at studying the efficacy of low doses of gaseous ozone in postharvest control of the table grape sour rot, a disease generally attributed to a consortium of non-Saccharomyces yeasts (NSY) and acetic acid bacteria (AAB). Sour rot incidence of wounded berries, inoculated with 8 NSYstrains, or 7 AAB, or 56 yeast-bacterium associations, was monitored at 25 °C up to six days. Sour rot incidence in wounded berries inoculated with yeast-bacterium associations resulted higher than in berries inoculated with one single NSY or AAB strain. Among all NSY-AAB associations, the yeast-bacterium association composed of Candida zemplinina CBS 9494 (Cz) and Acetobacter syzygii LMG 21419 (As) showed the highest prevalence of sour rot; thus, after preliminary in vitro assays, this simplified As-Cz microbial consortium was inoculated in wounded berries that were stored at 4 °C for ten days under ozone (2.14 mg m-3) or in air. At the end of cold storage, no berries showed sour-rot symptoms although ozonation mainly affected As viable cell count. After additional 12 days at 25 °C, the sour rot index of inoculated As-Cz berries previously cold-stored under ozone or in air accounted for 22.6 ± 3.7% and 66.7 ± 4.5%, respectively. Molecular analyses of dominant AAB and NSY populations of both sound and rotten berries during post-refrigeration period revealed the appearance of new strains mainly belonging to Gluconobacter albidus and Hanseniaspora uvarum species, respectively. Cold ozonation resulted an effective approach to extend the shelf-life of table grapes also after cold storage.
Collapse
Affiliation(s)
- L Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - L Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - S de Candia
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - F Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
23
|
Zhang CY, Liu XJ, Yi ZH, Ren YC, Li Y, Hui FL. Starmerella anomalae f.a., sp. nov., Starmerella asiatica f.a., sp. nov., Starmerella henanensis f.a., sp. nov. and Starmerella scarabaei f.a., sp. nov., four yeast species isolated from scarab beetles. Int J Syst Evol Microbiol 2017; 67:1600-1606. [DOI: 10.1099/ijsem.0.001795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cai-Ying Zhang
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Xiao-Jing Liu
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ze-Hao Yi
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Yong-Cheng Ren
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Ying Li
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| | - Feng-Li Hui
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
24
|
Draft Genome Sequence of the Yeast Starmerella bacillaris (syn., Candidazemplinina) FRI751 Isolated from Fermenting Must of Dried Raboso Grapes. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00224-17. [PMID: 28450507 PMCID: PMC5408105 DOI: 10.1128/genomea.00224-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Starmerella bacillaris is an ascomycetous yeast commonly present in enological environments. Here, we report the first draft genome sequence of S. bacillaris FRI751, which will facilitate the study of the characteristics of this interesting enological yeast.
Collapse
|
25
|
Yeasts found in vineyards and wineries. Yeast 2016; 34:111-128. [DOI: 10.1002/yea.3219] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/07/2022] Open
|
26
|
Lleixà J, Manzano M, Mas A, Portillo MDC. Saccharomyces and non- Saccharomyces Competition during Microvinification under Different Sugar and Nitrogen Conditions. Front Microbiol 2016; 7:1959. [PMID: 27994585 PMCID: PMC5136563 DOI: 10.3389/fmicb.2016.01959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
The inoculation of wines with autochthonous yeast allows obtaining complex wines with a peculiar microbial footprint characteristic from a wine region. Mixed inoculation of non-Saccharomyces yeasts and S. cerevisiae is of interest for the wine industry for technological and sensory reasons. However, the interactions between these yeasts are not well understood, especially those regarding the availability of nutrients. The aim of the present study was to analyze the effect of nitrogen and sugar concentration on the evolution of mixed yeast populations on controlled laboratory-scale fermentations monitored by density, plate culturing, PCR-DGGE and sugar and nitrogen consumption. Furthermore, the effect of the time of inoculation of Saccharomyces cerevisiae respect the initial co-inoculation of three non-Saccharomyces yeasts was evaluated over the evolution of fermentation. Our results have shown that S. cerevisiae inoculation during the first 48 h conferred a stabilizing effect over the fermentations with non-Saccharomyces strains tested and, generally, reduced yeast diversity at the end of the fermentation. On the other hand, nitrogen limitation increased the time of fermentation and also the proportion of non-Saccharomyces yeasts at mid and final fermentation. High sugar concentration resulted in different proportions of the inoculated yeast depending on the time of S. cerevisiae inoculation. This work emphasizes the importance of the concentration of nutrients on the evolution of mixed fermentations and points to the optimal conditions for a stable fermentation in which the inoculated yeasts survived until the end.
Collapse
Affiliation(s)
- Jessica Lleixà
- Biotecnología Enológica, Department Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Maria Manzano
- Biotecnología Enológica, Department Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Mas
- Biotecnología Enológica, Department Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - María Del C Portillo
- Biotecnología Enológica, Department Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|
27
|
Ozone treatments of post harvested wine grapes: Impact on fermentative yeasts and wine chemical properties. Food Res Int 2016; 87:134-141. [DOI: 10.1016/j.foodres.2016.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/19/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
|
28
|
Lemos WJ, Bovo B, Nadai C, Crosato G, Carlot M, Favaron F, Giacomini A, Corich V. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation. Front Microbiol 2016; 7:1249. [PMID: 27574517 PMCID: PMC4983571 DOI: 10.3389/fmicb.2016.01249] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 106 cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces new possibilities in wine yeast selection programs in order to identify innovative wine yeasts that are simultaneously antifungal agents in vineyards and alternative wine starters for grape must fermentation and open new perspective to a more integrated strategy for increasing wine quality.
Collapse
Affiliation(s)
- Wilson J Lemos
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova Legnaro, Italy
| | - Barbara Bovo
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Chiara Nadai
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Giulia Crosato
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Milena Carlot
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Francesco Favaron
- Department of Land Environment Agriculture and Forestry, University of Padova Legnaro, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of PadovaLegnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| |
Collapse
|
29
|
Maturano YP, Mestre MV, Combina M, Toro ME, Vazquez F, Esteve-Zarzoso B. Culture-dependent and independent techniques to monitor yeast species during cold soak carried out at different temperatures in winemaking. Int J Food Microbiol 2016; 237:142-149. [PMID: 27569377 DOI: 10.1016/j.ijfoodmicro.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/21/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
Abstract
Transformation of grape must into wine is a process that may vary according to the consumers' requirements. Application of cold soak prior to alcoholic fermentation is a common practice in cellars in order to enhance flavor complexity and extraction of phenolic compounds. However, the effect of this step on wine yeast microbiota is not well-known. The current study simultaneously analyzed the effect of different cold soak temperatures on the microbiological population throughout the process and the use of culture-dependent and independent techniques to study this yeast ecology. The temperatures assayed were those normally applied in wineries: 2.5, 8 and 12°C. PCR-DGGE allowed detection of the most representative species such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae. As could be expected, highest diversity indices were obtained at the beginning of each process, and survival of H. uvarum or S. bacillaris depended on the temperature. Our results are in agreement with those obtained with culture independent methods, but qPCR showed higher precision and a different behavior was observed for each yeast species and at each temperature assayed. Comparison of both culture-independent techniques can provide a general overview of the whole process, although DGGE does not reveal the diversity expected due to the reported problems with the sensitivity of this technique.
Collapse
Affiliation(s)
- Y Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina.
| | - M Victoria Mestre
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina; Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martin 3853, 5507 Luján de Cuyo Mendoza, Argentina
| | - María Eugenia Toro
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Universidad Nacional de San Juan (UNSJ), Av. San Martín 1109 (O), San Juan 5400, Argentina
| | - Braulio Esteve-Zarzoso
- Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel.li Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
30
|
Englezos V, Rantsiou K, Cravero F, Torchio F, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl Microbiol Biotechnol 2016; 100:5515-26. [PMID: 26960321 DOI: 10.1007/s00253-016-7413-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/21/2016] [Indexed: 11/28/2022]
Abstract
Decreasing the ethanol content in wine is a current challenge, mainly due to the global climate change and to the consumer preference for wines from grapes with increased maturity. In this study, a central composite design (CCD) and response surface methodology (RSM) approach was used to investigate the potential application of Starmerella bacillaris (synonym Candida zemplinina) in combination with Saccharomyces cerevisiae, in mixed (co-inoculated and sequential) cultures, to understand better the mechanism of co-habitation and achieve the objective of reducing the ethanol in wines. Laboratory scale fermentations demonstrated a decrease up to 0.7 % (v/v) of ethanol and an increase of about 4.2 g/L of glycerol when S. cerevisiae was inoculated with a delay of 48 h with respect to the inoculation of S. bacillaris. Pilot-scale fermentations, carried out in winemaking conditions, confirmed the laboratory results. This study demonstrates that the combination of strains and inoculation protocol could help to reduce the ethanol content in wines.
Collapse
Affiliation(s)
- Vasileios Englezos
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy
| | - Francesco Cravero
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy
| | - Fabrizio Torchio
- Istituto di Enologia e Ingegneria Agro-Alimentare, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | | | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095, Torino, Italy.
| |
Collapse
|
31
|
Grangeteau C, Gerhards D, von Wallbrunn C, Alexandre H, Rousseaux S, Guilloux-Benatier M. Persistence of Two Non-Saccharomyces Yeasts (Hanseniaspora and Starmerella) in the Cellar. Front Microbiol 2016; 7:268. [PMID: 27014199 PMCID: PMC4779898 DOI: 10.3389/fmicb.2016.00268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/19/2016] [Indexed: 11/30/2022] Open
Abstract
Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern). Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape berries for the three species studied. Some strains were found in the must in two consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe Vin, Aliment, Microbiologie, Stress, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Daniel Gerhards
- Zentrum für Analytische Chemie und Mikrobiologie, Institut für Mikrobiologie und Biochemie, Hochschule Geisenheim University Geisenheim, Germany
| | - Christian von Wallbrunn
- Zentrum für Analytische Chemie und Mikrobiologie, Institut für Mikrobiologie und Biochemie, Hochschule Geisenheim University Geisenheim, Germany
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe Vin, Aliment, Microbiologie, Stress, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe Vin, Aliment, Microbiologie, Stress, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe Vin, Aliment, Microbiologie, Stress, AgroSup Dijon - Université de Bourgogne Dijon, France
| |
Collapse
|
32
|
Alimadadi N, Soudi MR, Wang SA, Wang QM, Talebpour Z, Bai FY. Starmerella orientalis f.a., sp. nov., an ascomycetous yeast species isolated from flowers. Int J Syst Evol Microbiol 2016; 66:1476-1481. [DOI: 10.1099/ijsem.0.000905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nayyereh Alimadadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Reza Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Shi-An Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zahra Talebpour
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
33
|
Grangeteau C, Gerhards D, Terrat S, Dequiedt S, Alexandre H, Guilloux-Benatier M, von Wallbrunn C, Rousseaux S. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must. J Microbiol Methods 2015; 121:50-8. [PMID: 26688103 DOI: 10.1016/j.mimet.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Abstract
The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Daniel Gerhards
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sebastien Terrat
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Samuel Dequiedt
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| |
Collapse
|
34
|
Brysch-Herzberg M, Seidel M. Yeast diversity on grapes in two German wine growing regions. Int J Food Microbiol 2015; 214:137-144. [DOI: 10.1016/j.ijfoodmicro.2015.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 01/19/2023]
|
35
|
Masneuf-Pomarede I, Juquin E, Miot-Sertier C, Renault P, Laizet Y, Salin F, Alexandre H, Capozzi V, Cocolin L, Colonna-Ceccaldi B, Englezos V, Girard P, Gonzalez B, Lucas P, Mas A, Nisiotou A, Sipiczki M, Spano G, Tassou C, Bely M, Albertin W. The yeastStarmerella bacillaris(synonymCandida zemplinina) shows high genetic diversity in winemaking environments. FEMS Yeast Res 2015; 15:fov045. [DOI: 10.1093/femsyr/fov045] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 01/12/2023] Open
|
36
|
Romboli Y, Mangani S, Buscioni G, Granchi L, Vincenzini M. Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin A and hydroxytyrosol contents in Sangiovese wines. World J Microbiol Biotechnol 2015; 31:1137-45. [PMID: 25940328 DOI: 10.1007/s11274-015-1863-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Quercetins, vitisin A and hydroxytyrosol are phenolic compounds possessing several positive properties to human health. This paper refers on the possible effects of two wine yeast species, Saccharomyces cerevisiae and Starmerella bacillaris (synonym Candida zemplinina) on the accumulation of these compounds in experimental Sangiovese wines. A single lot of Sangiovese grapes was fermented by S. cerevisiae alone or by sequential inoculum of C. zemplinina and S. cerevisiae under two aeration conditions. The accumulation of quercetin and its glycosides resulted only influenced by must aeration. However, yeast species occurring in the fermentative process affected the relative abundances among the different forms of quercetin. Vitisin A contents were higher in wines produced in the presence of C. zemplinina. Finally, higher concentrations of hydroxytyrosol and tyrosol were found in wines produced by S. cerevisiae alone under non-aerated condition. The fermentation of different Sangiovese grape musts carried out by the assayed S. cerevisiae strain pointed out that slow fermentation kinetics lead to higher levels of hydroxytyrosol and tyrosol. The study underlines the role of yeast species in determining the accumulation of bioactive compounds in Sangiovese wine.
Collapse
Affiliation(s)
- Y Romboli
- Department of Management of Agricultural, Food and Forestry Systems (GESAAF), Università degli Studi di Firenze, Piazzale delle Cascine, 24, 50144, Florence, Italy,
| | | | | | | | | |
Collapse
|
37
|
Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol 2015; 199:33-40. [PMID: 25625909 DOI: 10.1016/j.ijfoodmicro.2015.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 11/26/2022]
Abstract
Nowadays, the use of non-Saccharomyces yeasts in combination with Saccharomyces cerevisiae is a state-of-the-art strategy to improve complexity and enhance the analytical composition of the wines. This application has stimulated the interest of understanding how the non-Saccharomyces yeasts can contribute to the quality of the wines. The study presented here explores the potential use of Starmerella bacillaris (synonym Candida zemplinina) under winemaking conditions. Physiological and genetic characterizations of sixty-three isolates of Starm. bacillaris, previously isolated from four different varieties of grapes, were carried out. Both analyses revealed a low level of diversity between the isolates of Starm. bacillaris, while the fermentation trials in laboratory scale demonstrated the good enological performance of this species. The strong fructophilic character of this species and its ability to produce low quantities of ethanol and acetic acid and high amounts of glycerol were confirmed. The results, presented here, demonstrated a potential application of this non-Saccharomyces species in mixed wine fermentations with S. cerevisiae.
Collapse
Affiliation(s)
- Vasileios Englezos
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Kalliopi Rantsiou
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Fabrizio Torchio
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Rolle
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Vincenzo Gerbi
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Luca Cocolin
- University of Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Agricultural Microbiology and Food Technology Sector, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy.
| |
Collapse
|
38
|
Teixeira A, Caldeira I, Duarte F. Molecular and oenological characterization of Touriga Nacional non-Saccharomyces
yeasts. J Appl Microbiol 2015; 118:658-71. [DOI: 10.1111/jam.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. Teixeira
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
| | - I. Caldeira
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas; Universidade de Évora; Évora Portugal
| | - F.L. Duarte
- Laboratório de Enologia, U.I.S. Tecnologia e Segurança Alimentar; Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoínha; Dois Portos Portugal
| |
Collapse
|
39
|
Wang C, Esteve-Zarzoso B, Mas A. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int J Food Microbiol 2014; 191:1-9. [PMID: 25218463 DOI: 10.1016/j.ijfoodmicro.2014.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
Various molecular approaches have been applied as culture-independent techniques to monitor wine fermentations over the last decade. Among them, those based on RNA detection have been widely used for yeast cell detection, assuming that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting intracellular rRNA is considered a promising technique for the investigation of wine ecology. For the present study, we applied the FISH technique in combination with epifluorescence microscopy and flow cytometry to directly quantify populations of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris during alcoholic fermentations. A new specific probe that hybridizes with eight species of Hanseniaspora genus and a second probe specific for Starm. bacillaris were designed, and the conditions for their application to pure cultures, mixed cultures, and wine samples were optimized. Single and mixed fermentations were performed with natural, concentrated must at two different temperatures, 15 °C and 25 °C. The population dynamics revealed that the Sacch. cerevisiae population increased to 10(7)-10(8)cells/ml during all fermentations, whereas H. uvarum and Starm. bacillaris tended to increase in single fermentations but remained at levels similar to their inoculations at 10(6)cells/ml in mixed fermentations. Temperature mainly affected the fermentation duration (slower at the lower temperature) but did not affect the population sizes of the different species. The use of these probes in natural wine fermentations has been validated.
Collapse
Affiliation(s)
- Chunxiao Wang
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
40
|
Pfliegler WP, Horváth E, Kállai Z, Sipiczki M. Diversity of Candida zemplinina isolates inferred from RAPD, micro/minisatellite and physiological analysis. Microbiol Res 2014; 169:402-10. [DOI: 10.1016/j.micres.2013.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/01/2022]
|
41
|
On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 2014; 106:67-84. [DOI: 10.1007/s10482-014-0170-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
42
|
Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts. Int J Food Microbiol 2014; 178:1-6. [PMID: 24667312 DOI: 10.1016/j.ijfoodmicro.2014.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 11/22/2022]
Abstract
Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation.
Collapse
|