1
|
Tanaka M, Hongyu B, Jiang C, Mino S, Milet Meirelles P, Thompson F, Gomez-Gil B, Sawabe T. Vibrio taketomensis sp. nov. by genome taxonomy. Syst Appl Microbiol 2019; 43:126048. [PMID: 31862126 DOI: 10.1016/j.syapm.2019.126048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Two novel strains C4III282T and C4III291 were isolated from seawater collected a site off the Taketomi coral reef. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio. MLSA using eight protein-coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) showed that C4III282T and C4III291 are closely related to the members of the Ponticus clade, namely Vibrio panuliri JCM 19500T, Vibrio ponticus DSM 16217T, and "Vibrio rhodolitus" G98. ANI and in silico DDH values with members of the Ponticus clade were 77.6-78.7% and 22.2-23.1, respectively. The name Vibrio taketomensis sp. nov. is proposed with C4III282T (CAIM 1928T=DSM 106943T=JCM 33434T) as the type strain.
Collapse
Affiliation(s)
- Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Bi Hongyu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Pedro Milet Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Brazil; National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Brazil
| | - Fabiano Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Gomez-Gil
- CIAD, AC Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, México
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
2
|
Luo P, He X, Liu Q, Hu C. Developing Universal Genetic Tools for Rapid and Efficient Deletion Mutation in Vibrio Species Based on Suicide T-Vectors Carrying a Novel Counterselectable Marker, vmi480. PLoS One 2015; 10:e0144465. [PMID: 26641275 PMCID: PMC4671572 DOI: 10.1371/journal.pone.0144465] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/18/2015] [Indexed: 01/06/2023] Open
Abstract
Despite that Vibrio spp. have a significant impact on the health of humans and aquatic animals, the molecular basis of their pathogenesis is little known, mainly due to the limited genetic tools for the functional research of genes in Vibrio. In some cases, deletion of target DNAs in Vibrio can be achieved through the use of suicide vectors. However, these strategies are time-consuming and lack universality, and the widely used counterselectable gene sacB does not work well in Vibrio cells. In this study, we developed universal genetic tools for rapid and efficient deletion mutations in Vibrio species based on suicide T-Vectors carrying a novel counterselectable marker, vmi480. We explored two uncharacterized genes, vmi480 and vmi470, in a genomic island from Vibrio mimicus VM573 and confirmed that vmi480 and vmi470 constitute a two-component toxin-antitoxin system through deletion and expression of vmi480 and vmi470. The product of vmi480 exhibited strong toxicity to Escherichia coli cells. Based on vmi480 and the PBAD or PTAC promoter system, we constructed two suicide T-vectors, pLP11 and pLP12, and each of these vectors contained a multiple cloning region with two AhdI sites. Both vectors linearized by AhdI digestion could be stored and directly ligated with purified PCR products without a digestion step. By using pLP11 and pLP12 coupled with a highly efficient conjugation system provided by E. coli β2163, six genes from four representative Vibrio species were easily deleted. By using the counterselective marker vmi480, we obtained 3–12 positive colonies (deletion mutants) among no more than 20 colonies randomly selected on counterselection plates. The strategy does not require the digestion of PCR products and suicide vectors every time, and it avoids large-scale screening colonies on counterselective plates. These results demonstrate that we successfully developed universal genetic tools for rapid and efficient gene deletion in Vibrio species.
Collapse
Affiliation(s)
- Peng Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Applied Marine Biology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiangyan He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuting Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoqun Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Applied Marine Biology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- * E-mail: (CQH)
| |
Collapse
|
3
|
Romalde JL, Dieguez AL, Lasa A, Balboa S. New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 2014; 4:413. [PMID: 24427157 PMCID: PMC3877837 DOI: 10.3389/fmicb.2013.00413] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023] Open
Abstract
The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed.
Collapse
Affiliation(s)
- Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidad de Santiago de Compostela, Santiago de CompostelaSpain
| | | | | | | |
Collapse
|