1
|
Zhang J, Wang J, Feng Y, Brunel B, Zong X. Unearthing Optimal Symbiotic Rhizobia Partners from the Main Production Area of Phaseolus vulgaris in Yunnan. Int J Mol Sci 2024; 25:8511. [PMID: 39126082 PMCID: PMC11313401 DOI: 10.3390/ijms25158511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Phaseolus vulgaris is a globally important legume cash crop, which can carry out symbiotic nitrogen fixation with rhizobia. The presence of suitable rhizobia in cultivating soils is crucial for legume cropping, especially in areas beyond the plant-host native range, where soils may lack efficient symbiotic partners. We analyzed the distribution patterns and traits of native rhizobia associated with P. vulgaris in soils of Yunnan, where the common bean experienced a recent expansion. A total of 608 rhizobial isolates were tracked from soils of fifteen sampling sites using two local varieties of P. vulgaris. The isolates were discriminated into 43 genotypes as defined by IGS PCR-RFLP. Multiple locus sequence analysis based on recA, atpD and rpoB of representative strains placed them into 11 rhizobial species of Rhizobium involving Rhizobium sophorae, Rhizobium acidisoli, Rhizobium ecuadorense, Rhizobium hidalgonense, Rhizobium vallis, Rhizobium sophoriradicis, Rhizobium croatiense, Rhizobium anhuiense, Rhizobium phaseoli, Rhizobium chutanense and Rhizobium etli, and five unknown Rhizobium species; Rhizobium genosp. I~V. R. phaseoli and R. anhuiense were the dominant species (28.0% and 28.8%) most widely distributed, followed by R. croatiense (14.8%). The other rhizobial species were less numerous or site-specific. Phylogenies of nodC and nifH markers, were divided into two specific symbiovars, sv. phaseoli regardless of the species affiliation and sv. viciae associated with R. vallis. Through symbiotic effect assessment, all the tested strains nodulated both P. vulgaris varieties, often resulting with a significant greenness index (91-98%). However, about half of them exhibited better plant biomass performance, at least on one common bean variety, and two isolates (CYAH-6 and BLYH-15) showed a better symbiotic efficiency score. Representative strains revealed diverse abiotic stress tolerance to NaCl, acidity, alkalinity, temperature, drought and glyphosate. One strain efficient on both varieties and exhibiting stress abiotic tolerance (BLYH-15) belonged to R. genosp. IV sv. phaseoli, a species first found as a legume symbiont.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Brigitte Brunel
- Eco&Sols, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France;
| | - Xuxiao Zong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. SUSTAINABILITY 2020. [DOI: 10.3390/su12156259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phenotypic and genotypic characterization of eight rhizobial isolates obtained from Arachis hypogaea nodules grown under stress environment was performed. Isolates were screened for their ability to tolerate different abiotic stresses (high temperature (60° C), salinity (1–5% (w/v) NaCl), and pH (1–12). The genomic analysis of 16S rRNA and housekeeping genes (atpD, recA, and glnII) demonstrated that native groundnut rhizobia from these stress soils are representatives of fast growers and phylogenetically related to Rhizobium sp. The phenotypic characterization (generation time, carbon source utilization) also revealed the isolates as fast-growing rhizobia. All the isolates can tolerate NaCl up to 3% and were able to grow between 20 and 37 °C with a pH between 5 to 10, indicating that the isolates were alkali and salt-tolerant. The tested isolates effectively utilize mono and disaccharides as carbon source. Out of eight, three rhizobial isolates (BN-20, BN-23, and BN-50) were able to nodulate their host plant, exhibiting their potential to be used as native groundnut rhizobial inoculum. The plant growth promoting characterization of all isolates revealed their effectiveness to solubilize inorganic phosphate (56–290 µg mL−1), synthesize indole acetic acid (IAA) (24–71 µg mL−1), and amplification of nitrogen fixing nifH gene, exploring their ability to be used as groundnut biofertilizer to enhance yield and N2-fixation for the resource poor farmers of rainfed Pothwar region.
Collapse
|
3
|
The ACC-Deaminase Producing Bacterium Variovorax sp . CT7.15 as a Tool for Improving Calicotome villosa Nodulation and Growth in Arid Regions of Tunisia. Microorganisms 2020; 8:microorganisms8040541. [PMID: 32283666 PMCID: PMC7232455 DOI: 10.3390/microorganisms8040541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Calicotome villosa is a spontaneous Mediterranean legume that can be a good candidate as pioneer plants to limit regression of vegetation cover and loss of biodiversity in Tunisian arid soils. In order to grow legumes in such soils, pairing rhizobia and nodule associated bacteria (NAB) might provide numerous advantages. In this work, cultivable biodiversity of rhizobial symbionts and NAB in nodules of C. villosa plants growing in five arid regions of south Tunisia was characterized. Phylogenetic analysis using 16S rDNA gene, dnak, recA and nodD sequences separated nodule-forming bacteria in six clades associated to genera Ensifer, Neorhizobium, Phyllobacterium and Rhizobium. Among NAB, the strain Variovorax sp. CT7.15 was selected due to its capacity to solubilise phosphate and, more interestingly, its high level of aminocyclopropane-1-carboxylate deaminase (ACC deaminase) activity. C. villosa plants were inoculated with representative rhizobia of each phylogenetic group and co-inoculated with the same rhizobia and strain CT7.15. Compared with single rhizobia inoculation, co-inoculation significantly improved plant growth and nodulation, ameliorated plant physiological state and increased nitrogen content in the plants, independently of the rhizobia used. These results support the benefits of pairing rhizobia and selected NAB to promote legume growth in arid or degraded soils.
Collapse
|
4
|
Díaz-Cárdenas C, Bernal LF, Caro-Quintero A, López G, David Alzate J, Gonzalez LN, Restrepo S, Shapiro N, Woyke T, Kyrpides NC, Baena S. Draft genome and description of Consotaella salsifontis gen. nov. sp. nov., a halophilic, free-living, nitrogen-fixing alphaproteobacterium isolated from an ancient terrestrial saline spring. Int J Syst Evol Microbiol 2017; 67:3744-3751. [PMID: 28875905 DOI: 10.1099/ijsem.0.002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A free-living, nitrogen-fixing, mesophilic and facultative aerobe, designated strain USBA 369T, was isolated from a terrestrial saline spring of the Colombian Andes. The non-sporulating rods (1.5×0.8 µm) with rounded ends stained Gram-negative and were motile by means of lophotrichous flagella. The strain grew optimally at 30 °C, at pH 6.9-7.5 and with 1.5 % (w/v) NaCl. The major fatty acids detected were C18 : 1ω7c and C19 : 0 cyclo ω8c, and the respiratory lipoquinone ubiquinone 10 (Q-10) was present. The genome consisted of 4.65 Mb with a DNA G+C content of 64.3 mol%. A total of 4371 genes were predicted and, of those, 4300 were protein coding genes and 71 were RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain USBA 369T formed a different lineage within the class Alphaproteobacteria, order Rhizobiales, and DNA homology studies with the most closely related genera, Aurantimonas, Aureimonas and Rhizobium (95 % 16S rRNA gene sequence similarity), showed values of <15 %. The phylogenomic analysis provided evidence for clear phylogenetic divergence between strain USBA 369T and the closely related genera. On the basis of the phenotypic, chemotaxonomic and phylogenomic evidence, strain USBA 369T is considered to represent a novel genus and a novel species for which the name Consotaella salsifontis gen. nov., sp. nov. is proposed. The type strain is USBA 369T (=KCTC 22549T=CMPUJ U369T).
Collapse
Affiliation(s)
- Carolina Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| | - Luisa Fernanda Bernal
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| | | | - Gina López
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| | - J David Alzate
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá D.C, Colombia
| | - Laura N Gonzalez
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá D.C, Colombia
| | - Silvia Restrepo
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá D.C, Colombia
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, California, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, California, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, California, USA
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| |
Collapse
|
5
|
de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485-2494. [PMID: 28771120 DOI: 10.1099/ijsem.0.002144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Zhang S, Yang S, Chen W, Chen Y, Zhang M, Zhou X, Fan G, Feng FY. Rhizobium arenae sp. nov., isolated from the sand of Desert Mu Us, China. Int J Syst Evol Microbiol 2017; 67:2098-2103. [PMID: 28126039 DOI: 10.1099/ijsem.0.001810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-strain-negative, rod-shaped, motile bacterium, designated MIM27T, was isolated from the sand of the Mu Us Desert, PR China. The strain could grow at 4-45 °C (optimum, 37 °C), at pH 6.6-9.0 (optimum, 8.0) and in the presence of 0-3 % (w/v) NaCl (optimum, 0 % in RNA liquid medium). The results of phylogenetic analysis of 16S rRNA gene sequences indicated that the strain represented a member of the genus Rhizobium, with the highest similarity (96.5 %) to Rhizobium pakistanense BN-19T. The results of analysis of the sequences of the nitrogen fixation gene nifH and three housekeeping genes, recA, atpD and glnII, also indicated that MIM27T was most closely related to the species of the genus Rhizobiumwith validly published names but the similarities were low (≤90.7 %). MIM27T did not form nodules on Pisum sativum, Vicia faba, Astragalus sinicus and Phaseolus vulgaris. The major respiratory quinone of MIM27T was Q-10. The genomic DNA G+C content was 59.8 mol%. Major fatty acids of MIM27T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C18 : 1ω7c 11-methyl, C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown ECL 10.9525). On the basis of the physiological, chemotaxonomic and phenotypic data, MIM27T is suggested to represent a novel species of the genus Rhizobium, for which the name Rhizobium arenae sp. nov. is proposed. The type strain is MIM27T (=KCTC 52299T=MCCC 1K03215T).
Collapse
Affiliation(s)
- Shengnan Zhang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Shanshan Yang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Wei Chen
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Yong Chen
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Mingjuan Zhang
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Xinai Zhou
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Guohua Fan
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| | - Fu Ying Feng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Huhhot 010018, PR China
| |
Collapse
|
7
|
Shamseldin A, Abdelkhalek A, Sadowsky MJ. Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 2016. [DOI: 10.1007/s13199-016-0462-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65:3763-3767. [DOI: 10.1099/ijsem.0.000632] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|