1
|
Oubohssaine M, Sbabou L, Aurag J. Native Heavy Metal-Tolerant Plant Growth Promoting Rhizobacteria Improves Sulla spinosissima (L.) Growth in Post-Mining Contaminated Soils. Microorganisms 2022; 10:microorganisms10050838. [PMID: 35630284 PMCID: PMC9144414 DOI: 10.3390/microorganisms10050838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
The potential of rhizobacteria in assisting plants used in the phytostabilization or re-vegetation of soils contaminated by heavy metals is gaining interest all around the world. In this context, six rhizobacterial strains isolated from highly heavy metal-contaminated soils situated in abandoned mining sites around the Oujda region (Morocco) were tested with Sulla spinosissima (L.), a native leguminous plant expanding in this area. The strains used were multi-resistant to heavy metals and possessed multiple plant growth-promoting traits. Potential beneficial effects of the strains were also evaluated in planta by measuring various growth and physiological parameters of inoculated Sulla plants grown in sterilized sand. Inoculation with the Rhodococcus qingshengii strain LMR340 boosted plant biomass (39% to 83% increase compared to uninoculated plants), chlorophyll and carotenoid content (up to 29%), and antioxidant enzyme activities (15% to 80% increase). Based on these interesting findings, selected strains were inoculated into plants growing in a heavy metal, multi-polluted, and poor soil. Under these conditions, non-inoculated plants and those inoculated with the strain LMR250 were unable to grow, while the other five bacterial inoculants restored plant growth. The best performing strain, Pseudarthrobacter oxydans LMR291, could be considered as a good biofertilizer and/or biostimulant candidate to be used for promoting the growth of selected plants in re-vegetation and/or phytostabilization programs of degraded and contaminated soils.
Collapse
|
2
|
Shar S, Reith F, Ball AS, Shahsavari E. Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. MICROBIAL ECOLOGY 2021; 81:977-989. [PMID: 33404821 DOI: 10.1007/s00248-020-01663-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The effects of platinum (Pt) and gold (Au) and on the soil bacterial community was evaluated in four different Australian soil types (acidic Burn Grounds (BGR), organic matter-rich Fox Lane, high silt/metal Pinpinio (PPN), and alkali Minnipa (MNP) spiked with either Pt or Au at 1, 25, and 100 mg kg-1 using a next-generation sequencing approach (amplicon-based, MiSeq). Soil type and metal concentrations were observed to be key drivers of Pt and Au effects on soil microbial community structure. Different trends were therefore observed in the response of the bacterial community to Pt and Au amendments; however in each soil type, Pt and Au amendment caused a detectable shift in community structure that in most samples was positively correlated with increasing metal concentrations. New dominant groups were only observed in BGR and PPN soils at 100 mg kg-1 (Kazan-3B-28 and Verrucomicrobia groups (BGR, Pt) and Firmicutes and Caldithrix groups (PPN, Pt) and WS2 (BGR, Au). The effects of Pt on soil microbial diversity were largely adverse at 100 mg kg-1 and were pronounced in acidic, basic, and metal/silt-rich soils. However, this effect was concentration-related; Au appeared to be more toxic to soil bacterial communities than Pt at 25 mg kg-1 but Pt was more toxic at 100 mg kg-1. More bacterial groups such as those belonging to Burkholderiales/Burkholderiaceae, Alicyclobacillaceae, Rubrobacteraceae, Cytophagaceae, Oxalobacteraceae were selectively enriched by Pt compared to Au (Sphingomonadaceae and Rhodospirillaceae) amendments irrespective of soil type. The research outcomes have important implications in the management (remediation) of Pt- and Au-contaminated environments.
Collapse
Affiliation(s)
- Sahar Shar
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia
- Deanship of Scientific Research King Saud University, Riyadh, 11451, Saudi Arabia
| | - Frank Reith
- Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia, 5064, Australia
| | - Andrew S Ball
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Esmaeil Shahsavari
- School of Science, RMIT University, PO Box 71, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
3
|
Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, Chin MY, Lo ML, Jee MS, Maie N, Melling L. Linking prokaryotic community composition to carbon biogeochemical cycling across a tropical peat dome in Sarawak, Malaysia. Sci Rep 2021; 11:6416. [PMID: 33742002 PMCID: PMC7979770 DOI: 10.1038/s41598-021-81865-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
Collapse
Affiliation(s)
- Simon Peter Dom
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan
| | - Sharon Yu Ling Lau
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Frazer Midot
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mui Lan Yap
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mei-Yee Chin
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mei Lieng Lo
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mui Sie Jee
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nagamitsu Maie
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Lulie Melling
- Sarawak Tropical Peat Research Institute, Lot 6035, Kuching-Samarahan Expressway, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
4
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
5
|
Harindintwali JD, Zhou J, Yang W, Gu Q, Yu X. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111020. [PMID: 32810706 DOI: 10.1016/j.ecoenv.2020.111020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/22/2023]
Abstract
Over the past 30 years, the ever-rising demands of the modern and growing population have led to the rapid development of agricultural and industrial sectors worldwide. However, this expansion has exposed the environment to various pollutants including heavy metal (HM)s. Almost all HMs are serious toxicants and can pose serious health risks to living organisms in addition to their bioaccumulative and non-biodegradable nature. Different techniques have been developed to restore the ecological functions of the HM-contaminated soil (HMCS). However, the major downfalls of the commonly used remediation technologies are the generation of secondary wastes, high operating costs, and high energy consumption. Phytoremediation is a prominent approach that is more innocuous than the existing remediation approaches. Some microbes-plant interactions enhance the bioremediation process, with heavy metal resistant-plant growth promoting bacteria (HMRPGPB) being widely used to assist phytoremediation of HMs. However, the most common of all major microbial assisted-phytoremediation disturbances is that the HM-contaminated soil is generally deficient in nutrients and cannot sustain the rapid growth of the applied HMRPGPB. In this case, biochar has recently been approved as a potential carrier of microbial agents. The biochar-HMRPGPB-plant association could provide a promising green approach to remediate HM-polluted sites. Therefore, this review addresses the mechanisms through which biochar and HMRPGPB can enhance phytoremediation. This knowledge of biochar-HMRPGPB-plant interactions is significant with respect to sustainable management of the HM-polluted environment in terms of both ecology and economy, and it offers the possibility of further development of new green technologies.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Jianli Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China; School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Guiyang, 550003, China
| | - Wenhua Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Qiuya Gu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
6
|
Wilhelm RC, Cyle KT, Martinez CE, Karasz DC, Newman JD, Buckley DH. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int J Syst Evol Microbiol 2020; 70:5093-5105. [PMID: 32809929 DOI: 10.1099/ijsem.0.004387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - K Taylor Cyle
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Carmen Enid Martinez
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM, Newman JD, Buckley DH. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:2137-2146. [PMID: 32027304 DOI: 10.1099/ijsem.0.004029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3-4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr-1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11T was Q-8, and the major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain is RP11T (=DSM 110123T=LMG 31517T).
Collapse
Affiliation(s)
- Roland C Wilhelm
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Sean J L Murphy
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole M Feriancek
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - David C Karasz
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher M DeRito
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | | | - Daniel H Buckley
- School of Integrative Plant Sciences, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1251-1257. [PMID: 29461181 DOI: 10.1099/ijsem.0.002661] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5T, was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJNT (99.4 %), Paraburkholderia dipogonis DL7T (98.8 %) and Paraburkholderia insulsa PNG-AprilT (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5T and P. phytofirmans PsJNT were 88.5 and 36.5 %, respectively. The DDH values for strain BN5T with P. dipogonis LMG 28415T and P. insulsa DSM 28142T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5T (=KACC 19419T=JCM 32303T).
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Pathak A, Chauhan A, Stothard P, Green S, Maienschein-Cline M, Jaswal R, Seaman J. Genome-centric evaluation of Burkholderia sp. strain SRS-W-2-2016 resistant to high concentrations of uranium and nickel isolated from the Savannah River Site (SRS), USA. GENOMICS DATA 2017; 12:62-68. [PMID: 28373958 PMCID: PMC5367793 DOI: 10.1016/j.gdata.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 01/21/2023]
Abstract
Savannah River Site (SRS), an approximately 800-km2 former nuclear weapons production facility located near Aiken, SC remains co-contaminated by heavy metals and radionuclides. To gain a better understanding on microbially-mediated bioremediation mechanisms, several bacterial strains resistant to high concentrations of Uranium (U) and Nickel (Ni) were isolated from the Steeds Pond soils located within the SRS site. One of the isolated strains, designated as strain SRS-W-2-2016, grew robustly on both U and Ni. To fully understand the arsenal of metabolic functions possessed by this strain, a draft whole genome sequence (WGS) was obtained, assembled, annotated and analyzed. Genome-centric evaluation revealed the isolate to belong to the Burkholderia genus with close affiliation to B. xenovorans LB400, an aggressive polychlorinated biphenyl-degrader. At a coverage of 90 ×, the genome of strain SRS-W-2-2016 consisted of 8,035,584 bases with a total number of 7071 putative genes assembling into 191 contigs with an N50 contig length of 134,675 bases. Several gene homologues coding for resistance to heavy metals/radionuclides were identified in strain SRS-W-2-2016, such as a suite of outer membrane efflux pump proteins similar to nickel/cobalt transporter regulators, peptide/nickel transport substrate and ATP-binding proteins, permease proteins, and a high-affinity nickel-transport protein. Also noteworthy were two separate gene fragments in strain SRS-W-2-2016 homologous to the spoT gene; recently correlated with bacterial tolerance to U. Additionally, a plethora of oxygenase genes were also identified in the isolate, potentially involved in the breakdown of organic compounds facilitating the strain's successful colonization and survival in the SRS co-contaminated soils. The WGS project of Burkholderia sp. strain SRS-W-2-2016 is available at DDBJ/ENA/GenBank under the accession #MSDV00000000.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Stefan Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Rajneesh Jaswal
- Environmental Biotechnology and Genomics Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA
| | - John Seaman
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| |
Collapse
|
10
|
Avanzi IR, Gracioso LH, Baltazar MDPG, Karolski B, Perpetuo EA, do Nascimento CAO. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3717-3726. [PMID: 27888481 DOI: 10.1007/s11356-016-8125-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Copper mining has polluted soils and water, causing a reduction of the microbial diversity and a change in the structure of the resident bacterial communities. In this work, selective isolation combined with MALDI-TOF MS and the 16S rDNA method were used for characterizing cultivable bacterial communities from copper mining samples. The results revealed that MALDI-TOF MS analysis can be considered a reliable and fast tool for identifying copper-resistant bacteria from environmental samples at the genera level. Even though some results were ambiguous, accuracy can be improved by enhancing reference databases. Therefore, mass spectra analysis provides a reliable method to facilitate monitoring of the microbiota from copper-polluted sites. The understanding of the microbial community diversity in copper-contaminated sites can be helpful to understand the impact of the metal on the microbiome and to design bioremediation processes.
Collapse
Affiliation(s)
- Ingrid Regina Avanzi
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil.
- Institute of Energy and Environment, Environmental Science Graduate Program, University of São Paulo, PROCAM-USP, Professor Luciano Gualberto St, 1289, São Paulo, SP, Brazil.
| | - Louise Hase Gracioso
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil
| | - Marcela Dos Passos Galluzzi Baltazar
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil
- Chemical Engineering Department, University of São Paulo, POLI-USP, Lineu Prestes Ave, 580, São Paulo, SP, Brazil
| | - Bruno Karolski
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil
| | - Elen Aquino Perpetuo
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil
- Department of Marine Sciences, Federal University of São Paulo, Imar-Unifesp, Alm. Saldanha da Gama Ave, 89, Santos, SP, Brazil
| | - Claudio Augusto Oller do Nascimento
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Conego Domenico Rangoni Rd, 270 km, Cubatão, SP, Brazil
- Institute of Energy and Environment, Environmental Science Graduate Program, University of São Paulo, PROCAM-USP, Professor Luciano Gualberto St, 1289, São Paulo, SP, Brazil
- Chemical Engineering Department, University of São Paulo, POLI-USP, Lineu Prestes Ave, 580, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Egamberdieva D, Wirth S, Abd-Allah EF. Tripartite Interaction Among Root-Associated Beneficial Microbes Under Stress. RHIZOTROPHS: PLANT GROWTH PROMOTION TO BIOREMEDIATION 2017:219-236. [DOI: 10.1007/978-981-10-4862-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Gao ZQ, Zhao DY, Xu L, Zhao RT, Chen M, Zhang CZ. Paraburkholderia caffeinitolerans sp. nov., a caffeine degrading species isolated from a tea plantation soil sample. Antonie van Leeuwenhoek 2016; 109:1475-1482. [DOI: 10.1007/s10482-016-0749-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
13
|
Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016; 66:2836-2846. [PMID: 27054671 DOI: 10.1099/ijsem.0.001065] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed to split the genus Burkholderia into two genera according to phylogenetic clustering: (1) a genus retaining this name and consisting mainly of animal and plant pathogens and (2) the genus Paraburkholderia including so-called environmental bacteria. The latter genus name has been validly published recently. During the period between the effective and valid publications of the genus name Paraburkholderia, 16 novel species of the genus Burkholderiawere described, but only two of them can be classified as members of this genus based on the emended genus description. Analysis of traits and phylogenetic positions of the other 11 species shows that they belong to the genus Paraburkholderia, and we propose to transfer them to this genus. The reclassified species names are proposed as Paraburkholderia dipogonis comb. nov., Paraburkholderia ginsengiterrae comb. nov., Paraburkholderia humisilvae comb. nov., Paraburkholderia insulsa comb. nov., Paraburkholderia kirstenboschensis comb. nov., Paraburkholderia metalliresistens comb. nov., Paraburkholderia monticola comb. nov., Paraburkholderia panaciterrae comb. nov., Paraburkholderia rhizosphaerae comb. nov., Paraburkholderia solisilvae comb. nov. and Paraburkholderia susongensis comb. nov. The remaining three species are transferred to the new genus Caballeronia gen. nov. proposed to accommodate twelve species of the genera Burkholderia and Paraburkholderia forming a distinctive clade in phylogenetic trees. The new genus members are Caballeronia choica comb. nov., Caballeronia cordobensis comb. nov., Caballeronia glathei comb. nov., Caballeronia grimmiae comb. nov., Caballeronia humi comb. nov., Caballeronia megalochromosomata comb. nov., Caballeronia jiangsuensis comb. nov., Caballeronia sordidicola comb. nov., Caballeronia telluris comb. nov., Caballeronia terrestris comb. nov., Caballeronia udeis comb. nov., and Caballeronia zhejiangensis comb. nov.
Collapse
Affiliation(s)
- Anatoly P Dobritsa
- Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
14
|
Egamberdieva D, Abd-Allah EF, Teixeira da Silva JA. Microbially Assisted Phytoremediation of Heavy Metal–Contaminated Soils. PLANT METAL INTERACTION 2016:483-498. [DOI: 10.1016/b978-0-12-803158-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000464] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. Note that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|