1
|
Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A, McInroy JA, Glaeser SP. Paenibacillus plantiphilus sp. nov. from the plant environment of Zea mays. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01852-x. [PMID: 37338631 PMCID: PMC10371898 DOI: 10.1007/s10482-023-01852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
A Gram-strain positive, aerobic, endospore-forming bacterial strain (JJ-246T) was isolated from the rhizosphere of Zea mays. The 16S rRNA gene sequence similarity comparisons showed a most closely relationship to Paenibacillus oenotherae DT7-4T (98.4%) and Paenibacillus xanthinolyticus 11N27T (98.0%). The pairwise average nucleotide identity and digital DNA-DNA hybridisation values of the JJ-246T genome assembly against publicly available Paenibacillus type strain genomes were below 82% and 33%, respectively. The draft genome of JJ-246T shared many putative plant-beneficial functions contributing (PBFC) genes, related to plant root colonisation, oxidative stress protection, degradation of aromatic compounds, plant growth-promoting traits, disease resistance, drug and heavy metal resistance, and nutrient acquisition. The quinone system of strain JJ-246T, the polar lipid profile and the major fatty acids were congruent with those reported for members of the genus Paenibacillus. JJ-246T was shown to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus plantiphilus sp. nov. is proposed, with JJ-246T (= LMG 32093T = CCM 9089T = CIP 111893T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lucie Lamothe
- CNRS, IFB-Core, UMS 3601, Institut Français de Bioinformatique, Evry, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université de Paris, 75015, Paris, France
| | - Dominique Clermont
- Institut Pasteur, CIP - Collection of Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université de Paris, 75015, Paris, France
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
2
|
Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A, McInroy JA, Glaeser SP. Paenibacillus allorhizoplanae sp. nov. from the rhizoplane of a Zea mays root. Arch Microbiol 2022; 204:630. [PMID: 36115912 PMCID: PMC9482572 DOI: 10.1007/s00203-022-03225-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
A Gram-positive staining, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays was studied for its detailed taxonomic allocation. Based on the 16S rRNA gene sequence similarity comparisons, strain JJ-42 T was shown to be a member of the genus Paenibacillus, most closely related to the type strain of Paenibacillus pectinilyticus (98.8%). The 16S rRNA gene sequence similarity to all other Paenibacillus species was below 98.5%. The pairwise average nucleotide identity (ANI) and digital DNA−DNA hybridization (dDDH) values of the JJ-42 T genome assembly against publicly available Paenibacillus type strain genomes were below 92% and 47%, respectively. The quinone system of strain JJ-42 T consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three aminophospholipids (APL), and one unidentified lipid. The major fatty acids were iso- and anteiso-branched with the major compound anteiso C15:0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-42 T from the most closely related species. Thus, JJ-42 T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus allorhizoplanae sp. nov. is proposed, with JJ-42 T (= LMG 32089 T = CCM 9085 T = DSM 111786 T = CIP 111891 T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lucie Lamothe
- CNRS, Institut Français de Bioinformatique, IFB-Core, UMS 3601, Evry, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Dominique Clermont
- Institut Pasteur, Université de Paris, CIP-Collection of Institut Pasteur, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Stefanie P Glaeser
- Institut für angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
3
|
Kämpfer P, Lipski A, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. Bacillus rhizoplanae sp. nov. from maize roots. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic and endospore-forming bacterial strain, isolated from the root surface of maize (Zea mays) was taxonomically studied. It could be clearly shown that, based on 16S rRNA gene sequence similarity comparisons, strain JJ-63T is a member of the genus
Bacillus
, most closely related to the type strain of
Bacillus pseudomycoides
(98.61%), followed by
Bacillus cereus
(98.47 %). Detailed phylogenetic analysis based on the 16S rRNA gene and the 87 proteins conserved within the phylum
Firmicutes
placed the strain into the Cereus clade. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values against the type strain of
B. pseudomycoides
were 80.97, 81.45 and 26.30 %, respectively. The quinone system of strain JJ-63T consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified glycolipid. Major fatty acids were iso- and anteiso-branched with the major compounds iso-C15 : 0 and iso-C17 : 0. Also, the characteristic compounds C13 : 0 iso and C16 : 1
cis10 were found. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-63T from the most closely related species. For this reason, JJ-63T represents a novel species of the genus
Bacillus
, for which the name Bacillus rhizoplanae sp. nov. is proposed, with JJ-63T (=LMG 32091T=CCM 9090T=DSM 111827T= CIP 111899T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CIP – Collection of Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
4
|
Kabeer R, V P S, C S PK, A P T, V S, E K R, K R B. Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Eichhornia crassipes (Mart.) Solms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1120-1132. [PMID: 34846266 DOI: 10.1080/15226514.2021.2007215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of multi-heavy metal tolerant bacteria isolated from the rhizosphere of Eichhornia crassipes in the phytoremediation of Cu and Pb under laboratory conditions was investigated. The heavy metal tolerant rhizosphere bacteria were identified as Bacillus cereus, Paenibacillus alvei, Aeromonas caviae, Paenibacillus taiwanensis, and Achromobacter spanius. Results showed a significant variation in wet weight, Heterotrophic Plate Count (HPC) of the rhizosphere, HPC of water, removal and uptake of Cu and Pb by E. crassipes, either alone or in association with the rhizosphere bacteria. The removal of Cu by E. crassipes in different experimental conditions showed that OTC (Oxytetracycline) untreated E. crassipes with rhizosphere bacteria has maximum removal with 95%, followed by E. crassipes alone with 84%. The OTC treated E. crassipes with rhizosphere bacteria could remove 81% of Cu. The maximum Pb removal efficiency of 93.4% was shown by OTC untreated E. crassipes with rhizosphere bacteria, followed by E. crassipes alone with 86.8%. The OTC treated E. crassipes with rhizosphere bacteria showed the least removal efficiency with 82.32%. The translocation factor (TF) values for Cu and Pb were lower than 1 indicated that the absorption was mainly accomplished in the roots of E. crassipes. The order of accumulation of Cu and Pb in E. crassipes was noted as root > leaf > petiole.
Collapse
Affiliation(s)
- Raisa Kabeer
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sylas V P
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
- Advanced Centre of Environmental Studies and Sustainable Development (ACESSD), Mahatma Gandhi University, Kottayam, Kerala, India
| | - Praveen Kumar C S
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Thomas A P
- Advanced Centre of Environmental Studies and Sustainable Development (ACESSD), Mahatma Gandhi University, Kottayam, Kerala, India
| | - Shanthiprabha V
- Advanced Centre of Environmental Studies and Sustainable Development (ACESSD), Mahatma Gandhi University, Kottayam, Kerala, India
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Baiju K R
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
5
|
Kämpfer P, Busse HJ, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. Paenibacillus allorhizosphaerae sp. nov., from soil of the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2021; 71. [PMID: 34672916 DOI: 10.1099/ijsem.0.005051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus, most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA-DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK-6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, Wien A-1210, Austria
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | | | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
6
|
Kong D, Zhang Q, Jiang X, Ma Q, Han X, Zhou Y, Xue H, Zhang Y, Zhang W, Ruan Z. Paenibacillus solisilvae sp. nov., isolated from birch forest soil. Int J Syst Evol Microbiol 2020; 70:2690-2695. [PMID: 32293556 DOI: 10.1099/ijsem.0.004093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, motile, rod-shaped bacterium, designated strain LAM7113T, was isolated from soil sample collected from a birch forest in Xinjiang Uygur Autonomous Region, PR China. Strain LAM7113T grew optimally at pH 8.0, 30 °C and in the presence of 1.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LAM7113T was closely related to members of the genus Paenibacillus, with the highest similarity to Paenibacillus baekrokdamisoli Back-11T (96.2 %). The genomic DNA G+C content was 43.4 mol%. The values of average nucleotide identity and DNA-DNA hybridization were 66.1 and 27.0 %, respectively, by comparing the draft genome sequences of strain LAM7113T and P. baekrokdamisoli Back-11T. Anteiso-C15 : 0 and iso-C15 : 0 were identified as the major cellular fatty acids. Menaquinone-7 was detected as the predominant respiratory quinone. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, three unidentified aminophospholipids, three unidentified glycolipids, one unidentified phospholipid and two unknown polar lipids. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM7113T is proposed to represent a novel species of the genus Paenibacillus with the name Paenibacillus solisilvae sp. nov. The type strain is LAM7113T (=CGMCC 1.16619T=JCM 32513T).
Collapse
Affiliation(s)
- Delong Kong
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Qi Zhang
- College of Life Science, Xinjiang Normal University, Urumqi, XinJiang, 830046, PR China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Qingyun Ma
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Xiaoyan Han
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Yiqing Zhou
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Huiying Xue
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Tibet, PR China
| | - Yuqin Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing 100050, PR China
| | - Wei Zhang
- College of Life Science, Xinjiang Normal University, Urumqi, XinJiang, 830046, PR China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China.,College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Tibet, PR China
| |
Collapse
|
7
|
Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017; 67:4956-4961. [DOI: 10.1099/ijsem.0.002357] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
8
|
Simon L, Škraban J, Kyrpides NC, Woyke T, Shapiro N, Cleenwerck I, Vandamme P, Whitman WB, Trček J. Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater. Antonie van Leeuwenhoek 2017; 110:1189-1197. [PMID: 28555445 DOI: 10.1007/s10482-017-0891-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Strain 11T was isolated from water of an artificial lake accumulating industrial wastewater on the outskirts of Celje, Slovenia. Phenotypic characterisation showed strain 11T to be a Gram-stain positive, spore forming bacterium. The 16S rRNA gene sequence identified strain 11T as a member of the genus Paenibacillus, closely related to Paenibacillus alvei (96.2%). Genomic similarity with P. alvei 29T was 73.1% (gANI), 70.2% (ANIb), 86.7% (ANIm) and 21.7 ± 2.3% (GGDC). The DNA G+C content of strain 11T was determined to be 47.5%. The predominant menaquinone of strain 11T was identified as MK-7 and the major fatty acid as anteiso-C15:0. The peptidoglycan was found to contain meso-diaminopimelic acid. In contrast to its close relatives P. alvei DSM 29T, Paenibacillus apiarius DSM 5581T and Paenibacillus profundus NRIC 0885T, strain 11T was found to be able to ferment D-fructose, D-mannose and D-xylose. A draft genome of strain 11T contains a cluster of genes associated with type IV pilin synthesis usually found in clostridia, and only sporadically in other Gram-positive bacteria. Genotypic, chemotaxonomic, physiological and biochemical characteristics of strain 11T presented in this study support the creation of a novel species within the genus Paenibacillus, for which the name Paenibacillus aquistagni sp. nov. is proposed, with strain 11T (=ZIM B1027T =LMG 29561T =CCM 8679T ) as the type strain.
Collapse
Affiliation(s)
- Lučka Simon
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jure Škraban
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia. .,Department of Biology, Faculty of Chemistry and Chemical Engineering, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
9
|
Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW, Glaeser SP. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017; 67:1058-1063. [DOI: 10.1099/ijsem.0.001779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Joseph W. Kloepper
- Department of Entomology and Plant Pathology, Auburn University, AL, USA
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
10
|
Zhang J, Ma XT, Gao JS, Zhang CW, Zhao JJ, Zhang RJ, Ma LA, Zhang XX. Paenibacillus oryzisoli sp. nov., isolated from the rhizosphere of rice. Antonie van Leeuwenhoek 2016; 110:69-75. [PMID: 27734255 DOI: 10.1007/s10482-016-0777-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
A novel bacterium, strain 1ZS3-15T, was isolated from rhizosphere of rice. Its taxonomic position was investigated using a polyphasic approach. The novel strain was observed to be Gram-stain positive, spore-forming, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1ZS3-15T was recovered within the genus Paenibacillus. It is closely related to Paenibacillus pectinilyticus KCTC 13222T (97.9 % similarity), Paenibacillus frigoriresistens CCTCC AB 2011150T (96.8 %), Paenibacillus alginolyticus JCM 9068T (96.4 %) and Paenibacillus chondroitinus DSM 5051T (95.5 %). The fatty acid profile of strain 1ZS3-15T, which showed a predominance of anteiso-C15:0 and iso-C16:0, supported the allocation of the strain into the genus Paenibacillus. The predominant menaquinone was found to be MK-7. The polar lipids profile of strain 1ZS3-15T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and two unidentified aminophospholipids. The cell wall peptidoglycan contains meso-diaminopimelic acid. Based on draft genome sequences, the DNA-DNA relatedness between strain 1ZS3-15T and the closely related species P. pectinilyticus KCTC 13222T are 24.2 ± 1.0 %, and the Average Nucleotide Identity values between the strains are 78.9 ± 0.1 %, which demonstrated that this isolate represents a new species in the genus Paenibacillus. The DNA G+C content was determined to be 45.3 mol%, which is within the range reported for Paenibacillus species. Characterisation by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1ZS3-15T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus oryzisoli sp. nov. is proposed. The type strain is 1ZS3-15T (= ACCC 19783T = JCM 30487T).
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science, The Yangtze University, Jingzhou, 434025, People's Republic of China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiao-Tong Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jun-Sheng Gao
- Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, People's Republic of China
| | - Cai-Wen Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Juan-Juan Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Rui-Jie Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Li-An Ma
- College of Life Science, The Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Xiao-Xia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
11
|
Guo X, Zhou S, Wang YW, Wang HM, Kong DL, Zhu J, Dong WW, He MX, Zhao BQ, Hu GQ, Ruan ZY. Paenibacillus salinicaeni sp. nov., isolated from saline silt sample. Antonie van Leeuwenhoek 2016; 109:721-8. [PMID: 26979511 DOI: 10.1007/s10482-016-0674-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022]
Abstract
A novel facultatively anaerobic bacterium, designated strain LAM0A28(T), was isolated from a saline silt sample collected from the Chinese Sea of Death located in Suining city, Sichuan province, China. Cells of strain LAM0A28(T) were observed to be Gram-stain positive, motile, endospore-forming and straight-rod shaped. Strain LAM0A28(T) was found to be able to grow at 15-45 °C (optimum: 30-35 °C), pH 5.0-10.0 (optimum: 7.5) and 0-5 % NaCl (w/v) (optimum: 0.5 %). The 16S rRNA gene sequence similarity analysis showed that strain LAM0A28(T) is closely related to Paenibacillus jilunlii DSM 23019(T) (97.5 %) and Paenibacillus graminis DSM 15220(T) (97.2 %). The DNA-DNA hybridization values between the isolate and P. jilunlii DSM 23019(T), P. graminis DSM 15220(T) were 30.2 ± 1.6 % and 44.7 ± 2.1 %, respectively. The DNA G+C content was found to be 51.2 mol% as determined by the T m method. The major cellular fatty acids were identified as anteiso-C15:0, C16:0, iso-C16:0 and C14:0. The major isoprenoid quinone was identified as MK-7. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two aminophospholipids and six unidentified lipids. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain LAM0A28(T) is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus salinicaeni sp. nov. is proposed. The type strain is LAM0A28(T) (=ACCC 00741(T) = JCM 30850(T)).
Collapse
Affiliation(s)
- Xiang Guo
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China.,Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Shan Zhou
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Yan-Wei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Hui-Min Wang
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - De-Long Kong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Jie Zhu
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Wei-Wei Dong
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Ming-Xiong He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Bing-Qiang Zhao
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China
| | - Guo-Quan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China.
| | - Zhi-Yong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, People's Republic of China.
| |
Collapse
|
12
|
Sitdhipol J, Paek J, Sin Y, Park IS, Thamacharoensuk T, Wannissorn B, Tanasupawat S, Chang YH. Paenibacillus cathormii sp. nov., isolated from tree bark. Int J Syst Evol Microbiol 2015; 66:1187-1192. [PMID: 26675308 DOI: 10.1099/ijsem.0.000854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, facultatively anaerobic, rod-shaped and endospore-forming bacterium, strain BK114-2T isolated from tree bark in Thailand was characterized taxonomically using a polyphasic approach. Analysis based on comparison of 16S rRNA gene sequences indicated that strain BK114-2T was affiliated to the genus Paenibacillus, and was closely related to Paenibacillus timonensis 2301032T (96.7 % 16S rRNA gene sequence similarity), Paenibacillus phoenicis 3PO2SAT (96.6 %) and Paenibacillus barengoltzii SAFN-016T (96.4 %). Strain BK114-2T contained meso-diaminopimelic acid in its cell-wall peptidoglycan. The polar lipids were composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unknown phospholipids, five unknown aminophospholipids and six unknown lipids. The only menaquinone detected was MK-7 and the dominant cellular fatty acids were C16 : 0 (22.9 %), anteiso-C15 : 0 (22.6 %), iso-C16 : 0 (19.4 %) and anteiso-C17 : 0 (14.7 %). The DNA G+C content was 52.0 mol%. Based on these results, strain BK114-2T repreesents a novel species of the genus Paenibacillus, for which the name Paenibacillus cathormii sp. nov. is proposed. The type strain is BK114-2T ( = KCTC 33251T = TISTR 2282T).
Collapse
Affiliation(s)
- Jaruwan Sitdhipol
- Bioscience Department, Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani 12120, Thailand
| | - Jayoung Paek
- Korean Collection for Type Cultures/ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Yeseul Sin
- Korean Collection for Type Cultures/ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - In-Soon Park
- Korean Collection for Type Cultures/ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Tanatip Thamacharoensuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhusita Wannissorn
- Bioscience Department, Thailand Institute of Scientific and Technological Research (TISTR), Pathum Thani 12120, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Young-Hyo Chang
- Korean Collection for Type Cultures/ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| |
Collapse
|
13
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65:3763-3767. [DOI: 10.1099/ijsem.0.000632] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|