1
|
LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura FT, Sultana M, Ahmed T, Alam M, Seed KD. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 2021; 373:eabg2166. [PMID: 34326207 PMCID: PMC9064180 DOI: 10.1126/science.abg2166] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Bacteriophage predation selects for diverse antiphage systems that frequently cluster on mobilizable defense islands in bacterial genomes. However, molecular insight into the reciprocal dynamics of phage-bacterial adaptations in nature is lacking, particularly in clinical contexts where there is need to inform phage therapy efforts and to understand how phages drive pathogen evolution. Using time-shift experiments, we uncovered fluctuations in Vibrio cholerae's resistance to phages in clinical samples. We mapped phage resistance determinants to SXT integrative and conjugative elements (ICEs), which notoriously also confer antibiotic resistance. We found that SXT ICEs, which are widespread in γ-proteobacteria, invariably encode phage defense systems localized to a single hotspot of genetic exchange. We identified mechanisms that allow phage to counter SXT-mediated defense in clinical samples, and document the selection of a novel phage-encoded defense inhibitor. Phage infection stimulates high-frequency SXT ICE conjugation, leading to the concurrent dissemination of phage and antibiotic resistances.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Amelia C McKitterick
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fatema-Tuz Johura
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Munirul Alam
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1741-1758. [PMID: 33123928 DOI: 10.1007/s10653-020-00759-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance is a great concern, which leads to global public health risks and ecological and environmental risks. The presence of antibiotic-resistant genes and antibiotic-resistant bacteria in the environment exacerbates the risk of spreading antibiotic resistance. Among them, horizontal gene transfer is an important mode in the spread of antibiotic resistance genes, and it is one of the reasons that the antibiotic resistance pollution has become increasingly serious. At the same time, free antibiotic resistance genes and resistance gene host bacterial also exist in the natural environment. They can not only affect horizontal gene transfer, but can also migrate and aggregate among environmental media in many ways and then continue to affect the proliferate and transfer of antibiotic resistance genes. All this shows the seriousness of antibiotic resistance pollution. Therefore, in this review, we reveal the sensitive factors affecting the distribution and spread of antibiotic resistance through three aspects: the influencing factors of horizontal gene transfer, the host bacteria of resistance genes and the migration of antibiotic resistance between environmental media. This review reveals the huge role of environmental migration in the spread of antibiotic resistance, and the environmental behavior of antibiotic resistance deserves wider attention. Meanwhile, extracellular antibiotic resistance genes and intracellular antibiotic resistance genes play different roles, so they should be studied separately.
Collapse
Affiliation(s)
- Zibo Lin
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Tao Yuan
- Department of Construction Equipment and Municipal Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, 221116, China
| | - Lai Zhou
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Sen Cheng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Xu Qu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| | - Ping Lu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China.
| | - Qiyan Feng
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou, 221008, China
| |
Collapse
|
3
|
Ma Q, Zhu C, Yao M, Yuan G, Sun Y. Correlation between the sulfamethoxazole-trimethoprim resistance of Shigella flexneri and the sul genes. Medicine (Baltimore) 2021; 100:e24970. [PMID: 33725864 PMCID: PMC7969299 DOI: 10.1097/md.0000000000024970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/09/2021] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to discuss the correlation between the sulfamethoxazole-trimethoprim resistance of Shigella flexneri (S. flexneri) and the antibiotic resistance genes sul1, sul2, and sul3 and SXT element.From May 2013 to October 2018, 102 isolates of S. flexneri were collected from the clinical samples in Jinan. The Kirby-Bauer (K-B) test was employed to determine the antibiotic susceptibility of the S. flexneri isolates. The antibiotic resistance rate was analyzed with the WHONET5.4 software. The isolates were subject to the PCR amplification of the sul genes (sul1, sul2, and sul3) and the SXT element. On the basis of the sequencing results, the correlation between the sulfamethoxazole-trimethoprim resistance of the S. flexneri isolates and the sul genes was analyzed.The antibiotic resistance rates of the 102 S. flexneri isolates to ampicillin, streptomycin, chloramphenicol, tetracycline, and sulfamethoxazole-trimethoprim were 90.2%, 90.2%, 88.2%, 88.2%, and 62.7%, respectively. The antibiotic resistance rates of these isolates to cefotaxime, ceftazidime, and ciprofloxacin varied between 20% and 35%. However, these isolates were 100% susceptible to cefoxitin. Positive fragments were amplified from 59.8% (61/102) of the 102 S. flexneri isolates, the sizes of the sul1 and sul2 genes being 338 bp and 286 bp, respectively. The sequence alignment revealed the presence of the sul1 and sul2 genes encoding for dihydrofolate synthase. The carrying rate of the sul1 gene was 13.7% (14/102), and that of the sul2 gene was 48.0% (49/102). No target gene fragments were amplified from the 3 isolates resistant to sulfamethoxazole-trimethoprim. The sul3 gene and SXT element were not amplified from any of the isolates. The testing and statistical analysis showed that the resistance of the S. flexneri isolates to sulfamethoxazole-trimethoprim correlated to the sul1 and sul2 genes.The acquired antibiotic resistance genes sul1 and sul2 were closely associated with the resistance of the 102 S. flexneri isolates to sulfamethoxazole-trimethoprim.
Collapse
Affiliation(s)
- Quanping Ma
- Department of Clinical Laboratory, The Fourth People's Hospital of Jinan
| | - Chengbao Zhu
- Department of Clinical Laboratory, Jinan Infectious Disease Hospital Affiliated to Shandong University
| | - Mingxiao Yao
- Department of Viral Infectious Diseases Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan
| | - Guangying Yuan
- Department of Clinical Laboratory, Jinan Infectious Disease Hospital Affiliated to Shandong University
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Taishan Medical University, Taian, Shandong Province 271016, China
| | - Yuguo Sun
- Department of Clinical Laboratory, The Fourth People's Hospital of Jinan
| |
Collapse
|
4
|
Sato JL, Fonseca MRB, Cerdeira LT, Tognim MCB, Sincero TCM, Noronha do Amaral MC, Lincopan N, Galhardo RS. Genomic Analysis of SXT/R391 Integrative Conjugative Elements From Proteus mirabilis Isolated in Brazil. Front Microbiol 2020; 11:571472. [PMID: 33193168 PMCID: PMC7606855 DOI: 10.3389/fmicb.2020.571472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Integrative conjugative elements (ICEs) are widespread in many bacterial species, often carrying antibiotic resistance determinants. In the present work, we screened a collection of Proteus mirabilis clinical isolates for the presence of type 1 SXT/R391 ICEs. Among the 76 isolates analyzed, 5 of them carry such elements. The complete sequences of these elements were obtained. One of the isolates carried the CMY-2 beta-lactamase gene in a transposon and is nearly identical to the element ICEPmiJpn1 previously described in Japan, and later shown to be present in other parts of the world, indicating global spread of this element. Nevertheless, the Brazilian isolate carrying ICEPmiJpn1 is not clonally related to the other lineages carrying the same element around the world. The other ICEs identified in this work do not carry known antibiotic resistance markers and are diverse in variable gene content and size, suggesting that these elements may be responsible for the acquisition of other advantageous traits by bacteria. Some sequences carried by these elements in Brazilian strains were not previously found in other SXT/R391 variants.
Collapse
Affiliation(s)
- Juliana L Sato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina R B Fonseca
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Louise T Cerdeira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maria C B Tognim
- Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Thais C M Sincero
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Redefinition and Unification of the SXT/R391 Family of Integrative and Conjugative Elements. Appl Environ Microbiol 2018; 84:AEM.00485-18. [PMID: 29654185 DOI: 10.1128/aem.00485-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.
Collapse
|
6
|
Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 2017; 38:95-105. [PMID: 28600959 DOI: 10.1016/j.mib.2017.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
Efforts to identify and characterize strategies for horizontal gene transfer (HGT) in prokaryotes could have overlooked some mechanisms that do not entirely fit in with the canonical ones most often described (conjugation of plasmids, phage transduction and transformation). The difficulty in distinguishing the different HGT strategies could have contributed to underestimate their real extent. Here we review non classical HGT strategies: some that require mobile genetic elements (MGEs) and others independent of MGE. Among those strategies that require MGEs, there is a range of newly reported, hybrid and intermediate MGEs mobilizing only their own DNA, others that mobilize preferentially bacterial DNA, or both. Considering HGT strategies independent of MGE, a few are even not restricted to DNA transfer, but can also mobilize other molecules. This review considers those HGT strategies that are less commonly dealt with in the literature. The real impact of these elements could, in some conditions, be more relevant than previously thought.
Collapse
|
7
|
Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci 2016; 1388:92-107. [DOI: 10.1111/nyas.13268] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|