1
|
Chen Z, Wang W, Chen L, Zhang P, Liu Z, Yang X, Shao J, Ding Y, Mi Y. Effects of pepper-maize intercropping on the physicochemical properties, microbial communities, and metabolites of rhizosphere and bulk soils. ENVIRONMENTAL MICROBIOME 2024; 19:108. [PMID: 39696399 DOI: 10.1186/s40793-024-00653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Intercropping increases land use efficiency and farmland ecological diversity. However, little is understood about whether and how soil biota, metabolites, and nutrients change under interspecific competition among plants. Thus, this study aimed to explore the changes in the physicochemical properties, microbial communities, and metabolites of rhizosphere and bulk soils of pepper monocropping and pepper-maize intercropping systems. RESULTS Intercropping significantly increased the contents of available phosphorus (AP) and available potassium (AK), and decreased the pH value, whereas it had little effect on the total nitrogen (TN) and organic matter (OM) in the rhizosphere and bulk soils, compared with those in monocropping pepper. Moreover, the OM content was higher in rhizosphere soil than in bulk soil. The microbial community structures and metabolite profiles also differed between the two systems. The diversity of bacteria and fungi increased in intercropped pepper. The relative abundances of Actinobacteria, Chloroflexi, Cyanobacteria, and Ascomycota were higher while those of Proteobacteria, Planctomycetes, Mucoromycota, and Basidiomycota were significantly lower in the rhizosphere and bulk soils from the intercropping system than in those from the monocropping system. Linear discriminant analysis revealed that the predominant bacteria and fungi in the rhizosphere soil from the intercropping system belonged to the order Sphingomonadales and genera Nitrospira, Phycicoccus and Auricularia, whereas those in the bulk soil from the intercropping system belonged to the phylum Acidobacteria and genera Calocera, Pseudogymnoascus, and Trichosporon. Intercropping promoted the secretion of flavonoids, alkaloids, and nucleotides and their derivatives in the rhizosphere soil and significantly increased the contents of organoheterocyclic compounds in the bulk soil. Furthermore, the AP and AK contents, and pH value had strong positive correlations with bacteria. In addition, co-occurrence network analysis also showed that asebogenin, trachelanthamidine, 5-methyldeoxycytidine, and soil pH were the key factors mediating root-soil-microbe interactions. CONCLUSION Intercropping can alter microbial community structures and soil metabolite composition in rhizosphere and bulk soils, enhancing soil nutrient contents, enriching soil beneficial microbes and secondary metabolites (flavonoids and alkaloids) of intercropped pepper, and provided a scientific basis for sustainable development in the pepper-maize intercropping system.
Collapse
Affiliation(s)
- Zeli Chen
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Wenzhi Wang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Peng Zhang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Zhenhuan Liu
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Xukun Yang
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Jinliang Shao
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Yan Ding
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China
| | - Yanhua Mi
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Sciences, No. 2238, Beijing Road, Kunming, Yunnan, 650205, China.
| |
Collapse
|
2
|
Bell CJ, Sena JA, Fajardo DA, Lavelle EM, Costa MA, Herman B, Davin LB, Lewis NG, Berry AM. A root nodule microbiome sequencing data set from red alder (Alnus rubra Bong.). Sci Data 2024; 11:1343. [PMID: 39695182 DOI: 10.1038/s41597-024-04131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
There have been frequent reports of more than one strain of the nitrogen-fixing symbiont, Frankia, in the same root nodule of plants in the genus Alnus, but quantitative assessments of their relative contributions have not been made to date. Neither has the diversity of other microbes, having potential functional roles in symbiosis, been systematically evaluated. Alnus rubra root nodule microbiota were studied using Illumina short read sequencing and kmer-based read classification. Single end 76 bp sequencing was done to a median depth of 96 million reads per sample. Reads were assigned to taxa using KrakenUniq, with taxon abundances being estimated using its companion program Bracken. This was the first high resolution study of Alnus root nodules using next generation sequencing (NGS), quantifying multiple Cluster 1 A Frankia strains in single nodules, and in some cases, a Cluster 4 strain. Root nodules were found to contain diverse bacteria, including several genera containing species known to have growth-promoting effects. Evidence was found for partitioning of some bacterial strains in older versus younger lobes.
Collapse
Affiliation(s)
- Callum J Bell
- National Center for Genome Resources, Santa Fe, NM, USA.
| | - Johnny A Sena
- National Center for Genome Resources, Santa Fe, NM, USA
| | | | | | - Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Barrington Herman
- Research and Extension Center, Washington State University, Puyallup, WA, USA
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Nouioui I, Neumann-Schaal M, Pujic P, Fournier P, Normand P, Herrera-Belaroussi A, Vemulapally S, Guerra T, Hahn D. Frankia nepalensis sp. nov., a non-infective non-nitrogen-fixing isolate from root nodules of Coriaria nepalensis Wall. Int J Syst Evol Microbiol 2023; 73. [PMID: 38098135 DOI: 10.1099/ijsem.0.006199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Aude Herrera-Belaroussi
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
4
|
Pujic P, Carro L, Fournier P, Armengaud J, Miotello G, Dumont N, Bourgeois C, Saupin X, Jame P, Selak GV, Alloisio N, Normand P. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. Int J Mol Sci 2023; 24:ijms24119162. [PMID: 37298114 DOI: 10.3390/ijms24119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Lorena Carro
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
- Departamento de Microbiología y Genética, Facultad de CC Agrarias y Ambientales, Universidad de Salamanca, Plaza Doctores de la Reina, 37007 Salamanca, Spain
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | | | - Caroline Bourgeois
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Xavier Saupin
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Patrick Jame
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Gabriela Vuletin Selak
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nicole Alloisio
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| |
Collapse
|
5
|
Nouioui I, Ghodhbane-Gtari F, Jando M, Klenk HP, Gtari M. Frankia colletiae sp. nov., a nitrogen-fixing actinobacterium isolated from Colletia cruciata. Int J Syst Evol Microbiol 2023; 73. [PMID: 36748481 DOI: 10.1099/ijsem.0.005656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A nitrogen-fixing actinobacterium strain (Cc1.17T) isolated from a root nodule of Colletia cruciata was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of meso-diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C16 : 0, iso-C16 : 0, C17 : 1 ω9 and C18 : 1 ω9 as major fatty acids (>10 %). Strain Cc1.17T showed 16S rRNA gene sequence similarities of 97.4-99.8 % to validly named Frankia species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17T in a new lineage within the genus Frankia. Digital DNA-DNA hybridization and average nucleotide identity values between strain Cc1.17T and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17T (=DSM 43829T=CECT 9313T) merits recognition as the type strain of a new species for which the name Frankia colletiae sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université La Manouba, Manouba, Tunisia.,USCR Bactériologie Moléculaire & génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, 1080 Tunis Cedex, Tunisia
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- USCR Bactériologie Moléculaire & génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, 1080 Tunis Cedex, Tunisia
| |
Collapse
|
6
|
Nouioui I, Ghodhbane-Gtari F, Pötter G, Klenk HP, Goodfellow M. Novel species of Frankia, Frankia gtarii sp. nov. and Frankia tisai sp. nov., isolated from a root nodule of Alnus glutinosa. Syst Appl Microbiol 2023; 46:126377. [PMID: 36379075 DOI: 10.1016/j.syapm.2022.126377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
The status of four Frankia strains isolated from a root nodule of Alnus glutinosa was established in a polyphasic study. Taxogenomics and phenotypic features show that the isolates belong to the genus Frankia. All four strains form extensively branched substrate mycelia, multilocular sporangia, vesicles, lack aerial hyphae, but contain meso-diaminopimelic acid as the diamino acid of the peptidoglycan, galactose, glucose, mannose, ribose, xylose and traces of rhamnose as cell wall sugars, iso-C16:0 as the predominant fatty acid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol as the major polar lipids, have comparable genome sizes to other cluster 1, Alnus-infective strains with structural and accessory genes associated with nitrogen fixation. The genome sizes of the isolates range from 7.0 to 7.7 Mbp and the digital DNA G + C contents from 71.3 to 71.5 %. The four sequenced genomes are rich in biosynthetic gene clusters predicted to express for novel specialized metabolites, notably antibiotics. 16S rRNA gene and whole genome sequence analyses show that the isolates fall into two lineages that are closely related to the type strains of Frankia alni and Frankia torreyi. All of these taxa are separated by combinations of phenotypic properties and by digital DNA:DNA hybridization scores which indicate that they belong to different genomic species. Based on these results, it is proposed that isolates Agncl-4T and Agncl-10, and Agncl-8T and Agncl-18, be recognised as Frankia gtarii sp. nov. and Frankia tisai sp. nov. respectively, with isolates Agncl-4T (=DSM 107976T = CECT 9711T) and Agncl-8T (=DSM 107980T = CECT 9715T) as the respective type strains.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Faten Ghodhbane-Gtari
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université de La Manouba, Tunisia; USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées & de Technologie, Université de Carthage, Tunisia
| | - Gabriele Pötter
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
7
|
Gtari M. Taxogenomic status of phylogenetically distant Frankia clusters warrants their elevation to the rank of genus: A description of Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov. as three novel genera within the family Frankiaceae. Front Microbiol 2022; 13:1041425. [PMID: 36425027 PMCID: PMC9680954 DOI: 10.3389/fmicb.2022.1041425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The genus Frankia is at present the sole genus in the family Frankiaceae and encompasses filamentous, sporangia-forming actinomycetes principally isolated from root nodules of taxonomically disparate dicotyledonous hosts named actinorhizal plants. Multiple independent phylogenetic analyses agree with the division of the genus Frankia into four well-supported clusters. Within these clusters, Frankia strains are well defined based on host infectivity range, mode of infection, morphology, and their behaviour in culture. In this study, phylogenomics, overall genome related indices (OGRI), together with available data sets for phenotypic and host-plant ranges available for the type strains of Frankia species, were considered. The robustness and the deep radiation observed in Frankia at the subgeneric level, fulfilling the primary principle of phylogenetic systematics, were strengthened by establishing genome criteria for new genus demarcation boundaries. Therefore, the taxonomic elevation of the Frankia clusters to the rank of the genus is proposed. The genus Frankia should be revised to encompass cluster 1 species only and three novel genera, Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov., are proposed to accommodate clusters 2, 3, and 4 species, respectively. New combinations for validly named species are also provided.
Collapse
Affiliation(s)
- Maher Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| |
Collapse
|
8
|
Wang L, Peng C, Gong B, Yang Z, Song J, Li L, Xu L, Yue T, Wang X, Yang M, Xu H, Liu X. Actinobacteria Community and Their Antibacterial and Cytotoxic Activity on the Weizhou and Xieyang Volcanic Islands in the Beibu Gulf of China. Front Microbiol 2022; 13:911408. [PMID: 35903476 PMCID: PMC9317746 DOI: 10.3389/fmicb.2022.911408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Weizhou Island and Xieyang Island are two large and young volcanic sea islands in the northern part of the South China Sea. In this study, high-throughput sequencing (HTS) of 16S rRNA genes was used to explore the diversity of Actinobacteria in the Weizhou and Xieyang Islands. Moreover, a traditional culture-dependent method was utilized to isolate Actinobacteria, and their antibacterial and cytotoxic activities were detected. The alpha diversity indices (ACE metric) of the overall bacterial communities for the larger island (Weizhou) were higher than those for the smaller island (Xieyang). A beta diversity analysis showed a more dispersive pattern of overall bacterial and actinobacterial communities on a larger island (Weizhou). At the order level, Frankiales, Propionibacteriales, Streptomycetales, Micrococcales, Pseudonocardiales, Micromonosporales, Glycomycetales, Corynebacteriales, and Streptosporangiales were the predominant Actinobacteria. A total of 22.7% of the OTUs shared 88%-95% similarity with some known groups. More interestingly, 15 OTUs formed a distinct and most predominant clade, and shared identities of less than 95% with any known families. This is the first report about this unknown group and their 16S rRNA sequences obtained from volcanic soils. A total of 268 actinobacterial strains were isolated by the culture-dependent method. Among them, 55 Streptomyces species were isolated, representing that 76.6% of the total. S. variabilis and S. flavogriseus were the most abundant. Moreover, some rare Actinobacteria were isolated. These included Micromonospora spp., Nocardia spp., Amycolatopsis spp., Tsukamurella spp., Mycobacterium spp., and Nonomuraea spp. Among them, eight Streptomyces spp. exhibited antibacterial activity against Bacillus cereus. Only three strains inhibited the growth of Escherichia coli. Four strains showed good activity against aquatic pathogenic bacterial strains of Streptococcus iniae. The cytotoxicity assay results showed that 27 strains (10.07%) exhibited cytotoxic activity against HeLa and A549 cell lines. Many actinobacterial strains with cytotoxic activity were identified as rare Actinobacteria, which illustrated that volcanic islands are vast reservoirs for Actinobacteria with promising antibacterial and cytotoxic activity. This study may significantly improve our understanding of actinobacterial communities on volcanic islands. The isolated Actinobacteria showed promising prospects for future use.
Collapse
Affiliation(s)
- Lin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lili Xu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Tao Yue
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiaolin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Mengping Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Huimin Xu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiong Liu
- Sea Area Use Dynamic Supervising and Managing Center of Fangchenggang City, Fangchenggang, China
| |
Collapse
|
9
|
Carlos-Shanley C, Guerra T, Hahn D. Draft genomes of non-nitrogen-fixing Frankia strains. J Genomics 2021; 9:68-75. [PMID: 34703504 PMCID: PMC8542509 DOI: 10.7150/jgen.65429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we describe the genomes of two novel candidate species of non-nitrogen fixing Frankia that were isolated from the root nodules of Coriaria nepalensis and Alnus glutinosa, genospecies CN and Ag, respectively. Comparative genomic analyses revealed that both genospecies lack genes essential for nitrogen-fixation and possess genes involved in the degradation of plant cell walls. Additionally, we found distinct biosynthetic gene clusters in each genospecies. The availability of these genomes will contribute to the study of the taxonomy and evolution of actinorhizal symbioses.
Collapse
Affiliation(s)
- Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
10
|
Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One 2021; 16:e0246263. [PMID: 33621258 PMCID: PMC7901772 DOI: 10.1371/journal.pone.0246263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Nutrient addition to forest ecosystems significantly influences belowground microbial diversity, community structure, and ecosystem functioning. Nitrogen (N) addition in forests is common in China, especially in the southeast region. However, the influence of N addition on belowground soil microbial community diversity in subtropical forests remains unclear. In May 2018, we randomly selected 12 experimental plots in a Pinus taiwanensis forest within the Daiyun Mountain Nature Reserve, Fujian Province, China, and subjected them to N addition treatments for one year. We investigated the responses of the soil microbial communities and identified the major elements that influenced microbial community composition in the experimental plots. The present study included three N treatments, i.e., the control (CT), low N addition (LN, 40 kg N ha-1 yr-1), and high N addition (HN, 80 kg N ha-1 yr-1), and two depths, 0−10 cm (topsoil) and 10−20 cm (subsoil), which were all sampled in the growing season (May) of 2019. Soil microbial diversity and community composition in the topsoil and subsoil were investigated using high-throughput sequencing of bacterial 16S rDNA genes and fungal internal transcribed spacer sequences. According to our results, 1) soil dissolved organic carbon (DOC) significantly decreased after HN addition, and available nitrogen (AN) significantly declined after LN addition, 2) bacterial α-diversity in the subsoil significantly decreased with HN addition, which was affected significantly by the interaction between N addition and soil layer, and 3) soil DOC, rather than pH, was the dominant environmental factor influencing soil bacterial community composition, while AN and MBN were the best predictors of soil fungal community structure dynamics. Moreover, N addition influence both diversity and community composition of soil bacteria more than those of fungi in the subtropical forests. The results of the present study provide further evidence to support shifts in soil microbial community structure in acidic subtropical forests in response to increasing N deposition.
Collapse
|
11
|
Herrera-Belaroussi A, Normand P, Pawlowski K, Fernandez MP, Wibberg D, Kalinowski J, Brachmann A, Berckx F, Lee N, Blom J, Pozzi AC, Fournier P, Bethencourt L, Dubost A, Abrouk D, Sellstedt A. Candidatus Frankia nodulisporulans sp. nov., an Alnus glutinosa-infective Frankia species unable to grow in pure culture and able to sporulate in-planta. Syst Appl Microbiol 2020; 43:126134. [PMID: 33059155 DOI: 10.1016/j.syapm.2020.126134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
We describe a new Frankia species, for three non-isolated strains obtained from Alnus glutinosa in France and Sweden, respectively. These strains can nodulate several Alnus species (A. glutinosa, A. incana, A. alnobetula), they form hyphae, vesicles and sporangia in the root nodule cortex but have resisted all attempts at isolation in pure culture. Their genomes have been sequenced, they are significantly smaller than those of other Alnus-infective species (5Mb instead of 7.5Mb) and are very closely related to one another (ANI of 100%). The name Candidatus Frankia nodulisporulans is proposed. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and draft genome sequences reported in this study for AgTrS, AgUmASt1 and AgUmASH1 are MT023539/LR778176/LR778180 and NZ_CADCWS000000000.1/CADDZU010000001/CADDZW010000001, respectively.
Collapse
Affiliation(s)
- Aude Herrera-Belaroussi
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France.
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Maria P Fernandez
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Daniel Wibberg
- The Center for Biotechnology CeBiTec, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- The Center for Biotechnology CeBiTec, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Natuschka Lee
- Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University, 35392 Giessen, Hesse, Germany
| | - Adrien C Pozzi
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Lorine Bethencourt
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Anita Sellstedt
- Department of Plant Physiology, UPSC, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
12
|
Pozzi ACM, Herrera-Belaroussi A, Schwob G, Bautista-Guerrero HH, Bethencourt L, Fournier P, Dubost A, Abrouk D, Normand P, Fernandez MP. Proposal of ' Candidatus Frankia alpina', the uncultured symbiont of Alnus alnobetula and A. incana that forms spore-containing nitrogen-fixing root nodules. Int J Syst Evol Microbiol 2020; 70:5453-5459. [PMID: 32910750 DOI: 10.1099/ijsem.0.004433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The members of the genus Frankia are, with a few exceptions, a group of nitrogen-fixing symbiotic actinobacteria that nodulate mostly woody dicotyledonous plants belonging to three orders, eight families and 23 genera of pioneer dicots. These bacteria have been characterized phylogenetically and grouped into four molecular clusters. One of the clusters, cluster 1 contains strains that induce nodules on Alnus spp. (Betulaceae), Myrica spp., Morella spp. and Comptonia spp. (Myricaceae) that have global distributions. Some of these strains produce not only hyphae and vesicles, as other cluster 1 strains do, but also numerous sporangia in their host symbiotic tissues, hence their phenotype being described as spore-positive (Sp+). While Sp+ strains have resisted repeated attempts at cultivation, their genomes have recently been characterized and found to be different from those of all described species, being markedly smaller than their phylogenetic neighbours. We thus hereby propose to create a 'Candidatus Frankia alpina' species for some strains present in nodules of Alnus alnobetula and A. incana that grow in alpine environments at high altitudes or in subarctic environments at high latitudes.
Collapse
Affiliation(s)
- Adrien C Meynier Pozzi
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Guillaume Schwob
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Hector H Bautista-Guerrero
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Lorine Bethencourt
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Maria P Fernandez
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| |
Collapse
|
13
|
Gtari M, Ghodhbane-Gtari F, Nouioui I. Frankia soli sp. nov., an actinobacterium isolated from soil beneath Ceanothus jepsonii. Int J Syst Evol Microbiol 2019; 70:1203-1209. [PMID: 31829914 DOI: 10.1099/ijsem.0.003899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinobacterial strain CjT was directly isolated from soil beneath Ceanothus jepsonii growing in the USA. The strain formed cell structures typical of the genus Frankia including extensive hyphae, vesicles and sporangia, and it effectively nodulated members of the actinorhizal Colletieae, Elaeagnaceae and Myricaceae. The whole-cell hydrolysate of strain CjT was rich in meso-diaminopimelic acid and galactose, glucose, mannose, xylose, ribose and a trace of rhamnose. Tbe polar lipid profile contained phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and glycophospholipid. The menaquinone was predominantly MK-9(H4). The fatty acid profile predominantly consisted of C17 : 1ω8c, iso-C16 : 0, C15:0, C16 : 0 and C17 : 0. A multilocus sequence analysis phylogeny based on atp1, ftsZ, dnaK, gyrA and secA gene sequences positioned the strain within Elaeagnaceae- and Colletieae-nodulating species together with Frankia elaeagni DSM 46783T, Frankia discariae DSM 46785T and Frankia irregularis DSM 45899T. Pairwise 16S rRNA gene sequence similarities showed that strain CjT was most closely related to F. discariae DSM 46785T (99.78 %) while their digital DNA-DNA hybridization value was 41.1 %. Based on the overall analyses, strain CjT (=DSM 100623T=CECT 9041T) warrants classification as the type strain of a novel species, for which the name Frankia soli sp. nov. is proposed.
Collapse
Affiliation(s)
- Maher Gtari
- Unité de Bactériologie Moléculaire et Génomique, Université Carthage (INSAT), Centre Urbain Nord, BP 676-1080 Tunis Cedex, Tunisia
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST), 2092, Tunis, Tunisia.,Unité de Bactériologie Moléculaire et Génomique, Université Carthage (INSAT), Centre Urbain Nord, BP 676-1080 Tunis Cedex, Tunisia
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
14
|
Nguyen TV, Wibberg D, Vigil-Stenman T, Berckx F, Battenberg K, Demchenko KN, Blom J, Fernandez MP, Yamanaka T, Berry AM, Kalinowski J, Brachmann A, Pawlowski K. Frankia-Enriched Metagenomes from the Earliest Diverging Symbiotic Frankia Cluster: They Come in Teams. Genome Biol Evol 2019; 11:2273-2291. [PMID: 31368478 PMCID: PMC6735867 DOI: 10.1093/gbe/evz153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 11/14/2022] Open
Abstract
Frankia strains induce the formation of nitrogen-fixing nodules on roots of actinorhizal plants. Phylogenetically, Frankia strains can be grouped in four clusters. The earliest divergent cluster, cluster-2, has a particularly wide host range. The analysis of cluster-2 strains has been hampered by the fact that with two exceptions, they could never be cultured. In this study, 12 Frankia-enriched metagenomes of Frankia cluster-2 strains or strain assemblages were sequenced based on seven inoculum sources. Sequences obtained via DNA isolated from whole nodules were compared with those of DNA isolated from fractionated preparations enhanced in the Frankia symbiotic structures. The results show that cluster-2 inocula represent groups of strains, and that strains not represented in symbiotic structures, that is, unable to perform symbiotic nitrogen fixation, may still be able to colonize nodules. Transposase gene abundance was compared in the different Frankia-enriched metagenomes with the result that North American strains contain more transposase genes than Eurasian strains. An analysis of the evolution and distribution of the host plants indicated that bursts of transposition may have coincided with niche competition with other cluster-2 Frankia strains. The first genome of an inoculum from the Southern Hemisphere, obtained from nodules of Coriaria papuana in Papua New Guinea, represents a novel species, postulated as Candidatus Frankia meridionalis. All Frankia-enriched metagenomes obtained in this study contained homologs of the canonical nod genes nodABC; the North American genomes also contained the sulfotransferase gene nodH, while the genome from the Southern Hemisphere only contained nodC and a truncated copy of nodB.
Collapse
Affiliation(s)
- Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Germany
| | | | - Fede Berckx
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis
| | - Kirill N Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Gießen, Germany
| | - Maria P Fernandez
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université Lyon I, Villeurbanne Cedex, France
| | | | - Alison M Berry
- Department of Plant Sciences, University of California, Davis
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Germany
| | - Andreas Brachmann
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| |
Collapse
|
15
|
Lau ICK, Feyereisen R, Nelson DR, Bell SG. Analysis and preliminary characterisation of the cytochrome P450 monooxygenases from Frankia sp. EuI1c (Frankia inefficax sp.). Arch Biochem Biophys 2019; 669:11-21. [PMID: 31082352 DOI: 10.1016/j.abb.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Frankia bacteria are nitrogen fixing species from the Actinobacterium phylum which live on the root nodules of plants. They have been hypothesised to have significant potential for natural product biosynthesis. The cytochrome P450 monooxygenase complement of Frankia sp. EuI1c (Frankia inefficax sp.), which comprises 68 members, was analysed. Several members belonged to previously uncharacterised bacterial P450 families. There was an unusually high number of CYP189 family members (21) suggesting that this family has undergone gene duplication events which are classified as "blooms". The likely electron transfer partners for the P450 enzymes were also identified and analysed. These consisted of predominantly [3Fe-4S] cluster containing ferredoxins (eight), a single [2Fe-2S] ferredoxin and a couple of ferredoxin reductases. Three of these CYP family members were produced and purified, using Escherichia coli as a host, and their substrate range was characterised. CYP1027H1 and CYP150A20 bound a broad range of norisoprenoids and terpenoids. CYP1074A2 was highly specific for certain steroids including testosterone, progesterone, stanolone and 4-androstene-3,17-dione. It is likely that steroids are the physiological substrates of CYP1074A2. These results also give an indication that terpenoids are the likely substrates of CYP1027H1 and CYP150A2. The large number of P450s belonging to distinct families as well as the associated electron transfer partners found in different Frankia strains highlights the importance of this family of enzymes has in the secondary metabolism of these bacteria.
Collapse
Affiliation(s)
- Ian C K Lau
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David R Nelson
- University of Tennessee Health Science Center, Dept. of Microbiology, Immunology and Biochemistry, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
16
|
Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk HP, Tisa LS, Sangal V, Goodfellow M. Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia. Front Microbiol 2019; 10:1457. [PMID: 31333602 PMCID: PMC6624747 DOI: 10.3389/fmicb.2019.01457] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carlos Cortés-albayay
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
| | - Jean Franco Castro
- The Chilean Collection of Microbial Genetic Resources (CChRGM), Instituto de Investigaciones Agropecuarias (INIA) – Quilamapu, Chillán, Chile
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
- Laboratoire Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis S. Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Gtari M, Nouioui I, Sarkar I, Ghodhbane-Gtari F, Tisa LS, Sen A, Klenk HP. An update on the taxonomy of the genus Frankia Brunchorst, 1886, 174 AL. Antonie van Leeuwenhoek 2018; 112:5-21. [PMID: 30232679 DOI: 10.1007/s10482-018-1165-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
Abstract
Since the recognition of the name Frankia in the Approved Lists of bacterial names (1980), few amendments have been given to the genus description. Successive editions of Bergey's Manual of Systematics of Archaea and Bacteria have broadly conflicting suprageneric treatments of the genus without any advances for subgeneric classification. This review focuses on recent results from taxongenomics and phenoarray approaches to the positioning and the structuring of the genus Frankia. Based on phylogenomic analyses, Frankia should be considered the single member of the family Frankiaceae within the monophyletic order, Frankiales. A polyphasic strategy incorporating genome to genome data and omniLog® phenoarrays, together with classical approaches, has allowed the designation and an amended description of a type strain of the type species Frankia alni, and the recognition of at least 10 novel species covering symbiotic and non symbiotic taxa within the genus. Genome to phenome data will be shortly incorporated in the scheme for proposing novel species including those recalcitrant to isolation in axenic culture.
Collapse
Affiliation(s)
- Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Indrani Sarkar
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.,Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824-2617, USA
| | - Arnab Sen
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
18
|
Pesce C, Kleiner VA, Tisa LS. Simple colony PCR procedure for the filamentous actinobacteria Frankia. Antonie van Leeuwenhoek 2018; 112:109-114. [PMID: 30187230 DOI: 10.1007/s10482-018-1155-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
Abstract
Molecular analysis of the filamentous actinobacteria Frankia is laborious because of the slow growth rate and required biomass needed for these techniques. An efficient and simple colony PCR protocol for Frankia was developed that saved time for analysis of any Frankia strains growing on a plate. Previously, it took 5-6 weeks to get the correct size Frankia colonies on plates and then a minimum of 5 weeks of growth in liquid culture for DNA extraction. With this technique, these colonies could be screened after 5-6 weeks of growth by colony PCR. The procedure used a combination of mechanical and heat treatments and required no added buffers or chemicals. Our results demonstrate rapid and efficient PCR.
Collapse
Affiliation(s)
- Céline Pesce
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA.
| | - Victoria A Kleiner
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Rd., Durham, NH, 03824-2617, USA
| |
Collapse
|
19
|
Normand P, Nouioui I, Pujic P, Fournier P, Dubost A, Schwob G, Klenk HP, Nguyen A, Abrouk D, Herrera-Belaroussi A, Pothier JF, Pflüger V, Fernandez MP. Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa. Int J Syst Evol Microbiol 2018; 68:3001-3011. [PMID: 30059001 DOI: 10.1099/ijsem.0.002939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strain ARgP5T, an actinobacterium isolated from a root nodule present on an Alnus incana subspecies rugosa shrub growing in Quebec City, Canada, was the subject of polyphasic taxonomic studies to clarify its status within the genus Frankia. 16S rRNA gene sequence similarities and ANI values between ARgP5T and type strains of species of the genus Frankiawith validly published names were 98.8 and 82 % or less, respectively. The in silico DNA G+C content was 72.4 mol%. ARgP5T is characterised by the presence of meso-A2pm, galactose, glucose, mannose, rhamnose (trace), ribose and xylose as whole-organism hydrolysates; MK-9(H8) as predominant menaquinone; diphosphatidylglycerol, phosphatidylinositol and phosphatidylglycerol as polar lipids and iso-C16 : 0 and C17 : 1ω8c as major fatty acids. The proteomic results confirmed the distinct position of ARgP5T from its closest neighbours in Frankiacluster 1. ARgP5T was found to be infective on two alder (Alnus glutinosa and Alnusalnobetula subsp. crispa) and on one bayberry (Morella pensylvanica) species and to fix nitrogen in symbiosis and in pure culture. On the basis of phylogenetic (16S rRNA gene sequence), genomic, proteomic and phenotypic results, strain ARgP5T (=DSM 45898=CECT 9033) is considered to represent a novel species within the genus Frankia for which the name Frankia canadensis sp. nov., is proposed.
Collapse
Affiliation(s)
- Philippe Normand
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Imen Nouioui
- 2Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia.,3School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Petar Pujic
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Pascale Fournier
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Audrey Dubost
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Guillaume Schwob
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Hans-Peter Klenk
- 3School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Danis Abrouk
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Aude Herrera-Belaroussi
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| | - Joël F Pothier
- 5Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | | | - Maria P Fernandez
- 1Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRA, UMR 1418, Villeurbanne 69622 Cedex, France
| |
Collapse
|
20
|
Nouioui I, Ghodhbane-Gtari F, Jando M, Tisa LS, Klenk HP, Gtari M. Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174 AL isolated in axenic culture. Antonie van Leeuwenhoek 2018; 112:57-65. [PMID: 30030730 DOI: 10.1007/s10482-018-1131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
Strain CpI1T was, in 1978, the first isolate of the genus Frankia to be obtained from Comptonia peregrina root nodules. In this study, a polyphasic approach was performed to identify the taxonomic position of strain CpI1T among the members of the genus Frankia. The strain contains meso-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, mannose, rhamnose, ribose and xylose as cell wall sugars. The polar lipids were found to consist of phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, an aminophospholipid and unidentified phospholipids and lipids. The predominant menaquinone was identified as MK-9 (H8), while the major fatty acid are iso-C16:0 and C17:1ω 8c. The 16S rRNA gene sequence identity varies from 97.4 to 99.6% with the type strains of currently described Frankia species. Phylogenetic analyses based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) using atp1, ftsZ, dnaK, gyrA and secA gene sequences showed that strain CpI1T is closely related to Frankia alni ACN14aT. The genome size of strain CpI1T is 7.6 Mb with a digital DNA G+C content of 72.4%. Digital DNA:DNA hybridization (values between strain CpI1T and its close phylogenetic relative F. alni ACN14aT was 44.1%, well below the threshold of 70% for distinguishing between bacterial genomic species. Based on the phenotypic, phylogenetic and genomic data, strain CpI1T (= DSM44263T = CECT9035T) warrants classification as the type strain of a novel species, for which the name Frankia torreyi sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST), 2092, Tunis, Tunisia.,Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Brunswick, Germany
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.
| |
Collapse
|
21
|
Nouioui I, Ghodhbane-Gtari F, Rhode M, Sangal V, Klenk HP, Gtari M. Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales. Int J Syst Evol Microbiol 2018; 68:2883-2914. [PMID: 30010524 DOI: 10.1099/ijsem.0.002914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A red pigmented actinobacterium designated G2T, forming extremely branched vegetative hyphae, vesicles and mutilocular sporangia, was isolated from Casuarina equisetifolia nodules. The strain failed to nodulate its original host plant but effectively nodulated members of actinorhizal Rhamnales. The taxonomic position of G2T was determined using a polyphasic approach. The peptidoglycan of the strain contained meso-diaminopimelic acid as diagnostic diamino acid, galactose, glucose, mannose, rhamnose, ribose and xylose. The polar lipid pattern consisted of phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipids (GPL1-2), phosphatidylglycerol (PG), aminophospholipid (APL) and unknown lipids (L). The predominant menaquinones were MK-9 (H4) and MK-9 (H6) while the major fatty acids were iso-C16 : 0, C17 : 1ω8c and C15 : 0. The size of the genome of G2T was 9.5 Mb and digital DNA G+C content was 70.9 %. The 16S rRNA gene showed 97.4-99.5 % sequence identity with the type strains of species of the genus Frankia. Digital DNA -DNA hybridisation (dDDH) values between G2T and its nearest phylogenetic neighbours Frankia elaeagniand Frankia discariaewere below the threshold of 70 %. On the basis of these results, strain G2T (=DSM 45899T=CECT 9038T) is proposed to represent the type strain of a novel species Frankia irregularis sp. nov.
Collapse
Affiliation(s)
- Imen Nouioui
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- 2Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Manfred Rhode
- 3Central Facility for Microscopy, HZI-Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Vartul Sangal
- 4Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Hans-Peter Klenk
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- 5Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080 Tunis Cedex, Tunisia
| |
Collapse
|
22
|
Pozzi AC, Bautista-Guerrero HH, Abby SS, Herrera-Belaroussi A, Abrouk D, Normand P, Menu F, Fernandez MP. Robust Frankia phylogeny, species delineation and intraspecies diversity based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain Typing (SLST) adapted to a large sample size. Syst Appl Microbiol 2018; 41:311-323. [DOI: 10.1016/j.syapm.2018.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
23
|
Nouioui I, Ghodhbane-Gtari F, Klenk HP, Gtari M. Frankia saprophytica sp. nov., an atypical, non-infective (Nod-) and non-nitrogen fixing (Fix-) actinobacterium isolated from Coriaria nepalensis root nodules. Int J Syst Evol Microbiol 2018; 68:1090-1095. [PMID: 29458682 DOI: 10.1099/ijsem.0.002633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Strain CN3T, a Coriaria nepalensis isolate, appears to form hyphae and sporangia typical of members fo the genus Frankia. However, it failed to form vesicles, to reduce acetylene and to induce nodules on its original host plant. A polyphasic approach was used here to determine the taxonomic status of strain CN3T. The 16S rRNA gene sequence of strain CN3T showed the highest sequence identity with Frankia asymbiotica type strain M16386T (99.4 %). Digital DNA-DNA hybridization between strains CN3T and M16386T was 25.7 %, which is clearly below the accepted cut-off point of 70 %. The G+C content of DNA was 71.8 mol%. Whole-cell hydrolysates of strain CN3T were rich in meso-diaminopimelic acid. Cell-wall sugars were composed of galactose, glucose, mannose, rhamnose and traces of ribose. The polar lipid profile contained phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, phosphoglycolipids, phospholipid, six uncharacterized glycolipids and two uncharacterized lipids. The predominant menaquinone (>25 %) was MK-9(H6). Major fatty acids (>15 %) of strain CN3T consisted of iso-C16 : 0, C17 : 1ω8c and C15 : 0. Based on 16S rRNA gene phylogeny, genome sequence analysis and phenotypic results, strain CN3T (=DSM 105290T=CECT 9314T) is proposed to represent the type strain of a novel species, Frankia saprophytica sp. nov.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord BP 676-1080 Tunis Cedex, Tunisia
| |
Collapse
|
24
|
Normand P, Nguyen TV, Battenberg K, Berry AM, Heuvel BV, Fernandez MP, Pawlowski K. Proposal of 'Candidatus Frankia californiensis', the uncultured symbiont in nitrogen-fixing root nodules of a phylogenetically broad group of hosts endemic to western North America. Int J Syst Evol Microbiol 2017; 67:3706-3715. [DOI: 10.1099/ijsem.0.002147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Philippe Normand
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Maria P. Fernandez
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Nouioui I, Gueddou A, Ghodhbane-Gtari F, Rhode M, Gtari M, Klenk HP. Frankia asymbiotica sp. nov., a non-infective actinobacterium isolated from Morella californica root nodule. Int J Syst Evol Microbiol 2017; 67:4897-4901. [PMID: 28918775 DOI: 10.1099/ijsem.0.002153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The taxonomic status of strain M16386T, a nitrogen-fixing but non-nodulating isolate from Morella californica, was established on the basis of a polyphasic approach. The strain grows as branched hyphae, with vesicles and non-motile productive multilocular sporangia. It metabolizes short fatty acids, TCA cycle intermediates and carbohydrates as carbon sources, and fixes nitrogen in the absence of combined nitrogen source in the growth media. Chemotaxonomic traits of strain M16386T are consistent with its affiliation to the genus Frankia. The characteristic diamino acid in the cell wall is meso-diaminopimelic acid. Strain M16386T contains phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, glycophospholipid and phospholipid as polar lipids; MK-9(H4) and MK-9(H6) as the predominant menaquinones; iso-C16 : 0 and C17 : 1ω8c as major fatty acids; and galactose, glucose, mannose, rhamnose and ribose as whole-cell sugars. Strain M16386T showed 98.2 % 16S rRNA gene sequence similarity with its closest phylogenetic neighbour, Frankia inefficaxDSM 45817T. Based on these results, strain M16386T (=DSM 100626T=CECT 9040T) is designated the type strain of a novel species of the genus Frankia,for which the name Frankia asymbiotica sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Abdellatif Gueddou
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Manfred Rhode
- Central Facility for Microscopy, HZI-Helmholtz Centre for Infection Research, Inhoffenstraße7, 38124 Braunschweig, Germany
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
26
|
Ktari A, Nouioui I, Furnholm T, Swanson E, Ghodhbane-Gtari F, Tisa LS, Gtari M. Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome. Stand Genomic Sci 2017; 12:51. [PMID: 28878862 PMCID: PMC5584510 DOI: 10.1186/s40793-017-0261-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 01/24/2023] Open
Abstract
Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to "Frankia discariae" with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Teal Furnholm
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Erik Swanson
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
27
|
Oshone R, Ngom M, Chu F, Mansour S, Sy MO, Champion A, Tisa LS. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics 2017; 18:633. [PMID: 28821232 PMCID: PMC5563000 DOI: 10.1186/s12864-017-4056-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Results Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Conclusion Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4056-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rediet Oshone
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.,Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-Air, Dakar, Sénégal
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Samira Mansour
- Faculty of Science, Suez Canal University, Ismalia, Egypt
| | - Mame Ourèye Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,UMR DIADE, Institut de Recherche pour le Développement, Montpellier, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA.
| |
Collapse
|
28
|
Permanent Draft Genome Sequence for Frankia sp. Strain Cc1.17, a Nitrogen-Fixing Actinobacterium Isolated from Root Nodules of Colletia cruciata. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00530-17. [PMID: 28619804 PMCID: PMC5473273 DOI: 10.1128/genomea.00530-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus. Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes.
Collapse
|
29
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 67:1095-1098. [PMID: 28581921 DOI: 10.1099/ijsem.0.001986] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
31
|
Nouioui I, Ghodhbane-Gtari F, Rohde M, Klenk HP, Gtari M. Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Microbiol 2017; 67:1266-1270. [PMID: 28100312 DOI: 10.1099/ijsem.0.001797] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The taxonomic description of a nitrogen-fixing actinobacterium, strain BMG5.1T, as a novel species within the genus Frankia was based on a polyphasic approach. The strain was isolated from the root nodules of Coriaria japonica, and it fulfilled Koch's postulates by inducing effective nodules on Coriaria spp. and Datisca spp. Based on phenotypic and chemotaxonomic features, strain BMG5.1T is distinguishable from all other species of the genus Frankia. It is characterized by the presence of phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol and glycophospholipids in its polar lipids; galactose, glucose, mannose and a trace of ribose as cellular sugars; meso-diaminopimelic acid as cell-wall peptidoglycan; C18 : 1ω9c as major fatty acid (>30 %); and MK-9(H6) (44.7 %) as predominant isoprenolog (>30 %). The 16S rRNA gene sequence similarities and the digital DNA-DNA hybridization values between the described novel strain and strains of the other species of the genus Frankia correspond to a range of 97-98.4 % and 22.1-24 %, respectively. The DNA G+C content is 70.2 mol%. On the basis of these results, strain BMG5.1T (=CECT 9032T=DSM 100624T) is proposed as the type strain of a novel species of the genus Frankia, named Frankia coriariae sp. nov.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße7, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
32
|
Nouioui I, Del Carmen Montero-Calasanz M, Ghodhbane-Gtari F, Rohde M, Tisa LS, Klenk HP, Gtari M. Frankia discariae sp. nov.: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Arch Microbiol 2017; 199:641-647. [PMID: 28105505 DOI: 10.1007/s00203-017-1337-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Strain BCU110501T was the first isolate reported to fulfill Koch's postulates by inducing effective nodules on its host plant of origin Discaria trinervis (Rhalmnaceae). Based on 16S rRNA gene sequence similarities, the strain was found to be most closely related to the type strain of Frankia elaeagni DSM 46783T (98.6%) followed by F. alni DSM 45986T (98.2%), F. casuarinae DSM 45818T (97.8%) and F. inefficacies DSM 45817T (97.8%). Digital DNA:DNA hybridizations (dDDH) between strain BCU110501Tand the type strains of other Frankia species were clearly below the cutoff point of 70%. The G+C content of DNA is 72.36%. The cell wall of strain BCU110501T contained meso-diaminopimelic acid and the cell sugars were galactose, glucose, mannose, xylose and ribose. Polar lipids were phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipid (GPL1-3), phosphatidylglycerol (PG) and an unknown lipid (L). The major fatty acids of strain BCU110501T consisted of iso-C16:0, C17:1 w8c and C16:0. Major menaquinones were MK9 (H4), MK9 (H6) and MK9 (H2). Based on these analyses, strain BCU110501T (=DSM 46785T=CECT 9042T) should be classified as the type strain of a novel Frankia species, for which the name Frankia discariae sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092, Tunis, Tunisia.,School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092, Tunis, Tunisia
| | - Manfred Rohde
- HZI-Helmholtz Centre for Infection Research, Inhoffenstraße7, 38124, Brunswick, Germany
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH, 03824-2617, USA
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092, Tunis, Tunisia.
| |
Collapse
|