1
|
Vesty EF, Whitbread AL, Needs S, Tanko W, Jones K, Halliday N, Ghaderiardakani F, Liu X, Cámara M, Coates JC. Cross-kingdom signalling regulates spore germination in the moss Physcomitrella patens. Sci Rep 2020; 10:2614. [PMID: 32054953 PMCID: PMC7018845 DOI: 10.1038/s41598-020-59467-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023] Open
Abstract
Plants live in close association with microorganisms that can have beneficial or detrimental effects. The activity of bacteria in association with flowering plants has been extensively analysed. Bacteria use quorum-sensing as a way of monitoring their population density and interacting with their environment. A key group of quorum sensing molecules in Gram-negative bacteria are the N-acylhomoserine lactones (AHLs), which are known to affect the growth and development of both flowering plants, including crops, and marine algae. Thus, AHLs have potentially important roles in agriculture and aquaculture. Nothing is known about the effects of AHLs on the earliest-diverging land plants, thus the evolution of AHL-mediated bacterial-plant/algal interactions is unknown. In this paper, we show that AHLs can affect spore germination in a representative of the earliest plants on land, the Bryophyte moss Physcomitrella patens. Furthermore, we demonstrate that sporophytes of some wild isolates of Physcomitrella patens are associated with AHL-producing bacteria.
Collapse
Affiliation(s)
- Eleanor F Vesty
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,University Centre Shrewsbury, Guildhall, Frankwell Quay, Shrewsbury, Shropshire, UK
| | - Amy L Whitbread
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
| | - Sarah Needs
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Life, Health and Chemical Sciences, Open University, Walton Hall, Kents Hill, Milton Keynes, UK
| | - Wesal Tanko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kirsty Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nigel Halliday
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Xiaoguang Liu
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Miguel Cámara
- National Biofilm Innovations Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham, UK.
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
2
|
Xu YY, Yang JS, Liu C, Wang ET, Wang RN, Qiu XQ, Li BZ, Chen WF, Yuan HL. Water-Soluble Humic Materials Regulate Quorum Sensing in Sinorhizobium meliloti Through a Novel Repressor of expR. Front Microbiol 2018; 9:3194. [PMID: 30627123 PMCID: PMC6309736 DOI: 10.3389/fmicb.2018.03194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/23/2022] Open
Abstract
Quorum sensing (QS) plays an important role in the growth, nodulation, and nitrogen fixation of rhizobia. In this study, we show that water-soluble humic materials (WSHM) repress the expression of the QS related genes sinI, sinR, and expR in Sinorhizobium meliloti. This decreased the production of N-acetyl homoserine lactones (AHL) and exopolysaccharides (EPS), and ultimately increased S. meliloti cell density. We also identified a novel regulator, SMc03890 (renamed QsrR), which binds directly to the expR promoter. Deletion of qsrR increased expR expression. WSHM repressed the expression of expR by augmenting the interaction between QsrR and the expR promoter; this was determined by a bacterial-one-hybrid assay. These effects of WSHM on the QS system in S. meliloti may be the underlying mechanism by which WSHM increase the symbiotic nitrogen fixation of Medicago sativa inoculated with S. meliloti. This study provides the first evidence that humic acids regulate the QS of rhizobia and suggests that WSHM could be used as fertilizers to improve the efficiency of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin-Shui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En-Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ruo-Nan Wang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Qian Qiu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bao-Zhen Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Feng Chen
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Li Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbial, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Fernández M, Corral-Lugo A, Krell T. The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ Microbiol 2018; 20:4230-4244. [PMID: 30051572 DOI: 10.1111/1462-2920.14301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
The interference of plant compounds with bacterial quorum sensing (QS) is a major mechanism through which plants and bacteria communicate. However, little is known about the modes of action and effects on signal integrity during this type of communication. We have recently shown that the plant compound rosmarinic acid (RA) specifically binds to the Pseudomonas aeruginosa RhlR QS receptor. To determine the effect of RA on expression patterns, we carried out global RNA-seq analysis. The results show that RA induces the expression of 128 genes, amongst which many virulence factor genes. RA triggers a broad QS response because 88% of the induced genes are known to be controlled by QS, and because RA stimulated genes were found to be involved in all four QS signalling systems within P. aeruginosa. This finding was confirmed through the analysis of transcriptional fusions transferred to wt and a rhlI/lasI double mutant. RA did not induce gene expression in the rhlI/lasI/rhlR triple mutant indicating that the effects observed are due to the RA-RhlR interaction. Furthermore, RA induced seven sRNAs that were all encoded in regions close to QS and/or RA induced genes. This work significantly enhances our understanding of plant bacteria interaction.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Gif-Sur-Yvette, France
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
4
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|