1
|
Zheng Y, Wang Y, Yang X, Gao J, Xu G, Yuan J. Effective mechanisms of water purification for nitrogen-modified attapulgite, volcanic rock, and combined exogenous microorganisms. Front Microbiol 2022; 13:944366. [PMID: 36033894 PMCID: PMC9399813 DOI: 10.3389/fmicb.2022.944366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 12/07/2022] Open
Abstract
The study tested the water purification mechanism of the combination of microorganisms and purification materials via characteristic, enzymatic, and metagenomics methods. At 48 h, the removal rates of total nitrogen, total phosphorous, and Mn chemical oxygen demand in the combination group were 46.91, 50.93, and 65.08%, respectively. The alkaline phosphatase (AKP) activity increased during all times tested in the volcanic rock, Al@TCAP, and exogenous microorganism groups, while the organophosphorus hydrolase (OPH), dehydrogenase (DHO), and microbial nitrite reductase (NAR) activities increased at 36-48, 6-24, and 36-48 h, respectively. However, the tested activities only increased in the combination groups at 48 h. Al@TCAP exhibits a weak microbial loading capacity, and the Al@TCAP removal is primarily attributed to adsorption. The volcanic rock has a sufficient ability to load microorganisms, and the organisms primarily perform the removal for improved water quality. The predominant genera Pirellulaceae and Polynucleobacter served as the sensitive biomarkers for the treatment at 24, 36-48 h. Al@TCAP increased the expression of Planctomycetes and Actinobacteria, while volcanic rock increased and decreased the expression of Planctomycetes and Proteobacteria. The growth of Planctomycetes and the denitrification reaction were promoted by Al@TCAP and the exogenous microorganisms. The purification material addition group decreased the expression of Hyaloraphidium, Chytridiomycetes (especially Hyaloraphidium), and Monoblepharidomycetes and increased at 36-48 h, respectively. Ascomycota, Basidiomycota, and Kickxellomycota increased in group E, which enhanced the nitrogen cycle through microbial enzyme activities, and the growth of the genus Aspergillus enhanced the phosphorous purification effect.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yuqin Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Xiaoxi Yang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Gangchun Xu,
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- Julin Yuan,
| |
Collapse
|
2
|
Basha AK, Kuttanapilly LV, Vaiyapuri M, Rathore G, Tripathi G, Prasad KP, Badireddy MR, Joseph TC. Microbial diversity and composition in acidic sediments of freshwater finfish culture ponds fed with two types of feed - A metagenomic approach. Lett Appl Microbiol 2022; 75:171-181. [PMID: 35419857 DOI: 10.1111/lam.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Microbial community profile associated with acidic pond sediments (APS) (pH=3.0-4.5) of freshwater finfish aquaculture ponds (n=8) was investigated. Sediment DNA extracted from the eight APS were subjected to high-throughput sequencing of V3 and V4 regions which yielded 7236 operational taxonomic units (OTUs) at a similarity of 97%. Overall results showed higher proportion of bacterial OTUs than archaeal OTUs in all the APS. Euryarchaeota (23%), Proteobacteria (19%), Chloroflexi (17%) Crenarchaeota (5.3%), Bacteroidetes (4.8%), Nitrospirae (3.2%), Nanoarchaeaeota (3%) which together constituted 75% of the microbial diversity. At the genus level, there was high preponderance of methanogens namely Methanolinea (5.4%), Methanosaeta (4.5%) and methanotrops, Bathyarchaeota (5%) in APS. Moreover, the abundant phyla in the APS were not drastically affected by the administration of chicken slaughter waste (R-group ponds) and commercial fish feed (C-group ponds), since 67% of the OTUs generated remained common in the APS of both the groups of ponds. There was a minimal difference of 24-26% of OTUs between C-group and R-group ponds suggesting the existence of a core microbial community in these ponds driven by acidic pH over the years. This study concludes that microbial diversity in pond sediment was influenced to a lesser extent by the addition of chicken slaughter waste but was majorly driven by acidic nature of the pond.
Collapse
Affiliation(s)
- Ahamed Kusunur Basha
- ICAR-Central Institute of Fisheries Technology, Visakhapatnam Research Centre, Visakhapatnam, 530 003, Andhra Pradesh, India
| | | | - Murugadas Vaiyapuri
- ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Gaurav Rathore
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226 002, Uttar Pradesh, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, Maharashtra, India
| | - Kurcheti Pani Prasad
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, Maharashtra, India
| | - Madhusudana Rao Badireddy
- ICAR-Central Institute of Fisheries Technology, Visakhapatnam Research Centre, Visakhapatnam, 530 003, Andhra Pradesh, India
| | | |
Collapse
|
3
|
Wu D, Zhao Y, Cheng L, Zhou Z, Wu Q, Wang Q, Yuan Q. Activity and structure of methanogenic microbial communities in sediments of cascade hydropower reservoirs, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147515. [PMID: 33975103 DOI: 10.1016/j.scitotenv.2021.147515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Freshwater reservoirs are an important source of the greenhouse gas methane (CH4). However, little is known about the activity and structure of microbial communities involved in methanogenic decomposition of sediment organic matter (SOM) in cascade hydropower reservoirs. In this study, we targeted on sediments of three cascade reservoirs in Wujiang River, Southwest China. Our results showed that the content of sediment organic carbon (SOC) was between 3% and 11%, and it's positively correlated with both C/N ratio and recalcitrant organic carbon content of SOM. Meanwhile, SOC content was positively correlated with CH4 production rates but had no significant correlation with total CO2 production rates of the sediments, when rates were normalized to sediment volume. Resultantly, the sediment anaerobic decomposition rates hardly significantly increase along with the SOC content. These results suggested that the terrestrial organic matter accumulated after damming stimulated CH4 production from the reservoir sediments even though its decomposition rate was limited. Meantime, high throughput sequencing of 16S rRNA genes indicated that not only the hydrogenotrophic and acetoclastic, but also the methylotrophic methanogens (Methanomassiliicoccus) are abundant in the reservoir sediments. Moreover, metagenomic sequencing also suggested that methylotrophic methanogenesis are potentially important in the sediment of cascade reservoirs. Finally, the hydraulic residence time of the reservoir could be the key controlling factor of the structures of bacterial and archaeal communities as well as the CH4 production rates of the reservoir sediments.
Collapse
Affiliation(s)
- Debin Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qian Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
4
|
Shen X, Xu M, Li M, Zhao Y, Shao X. Response of sediment bacterial communities to the drainage of wastewater from aquaculture ponds in different seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137180. [PMID: 32065893 DOI: 10.1016/j.scitotenv.2020.137180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Bacterial communities play an important role in diffuse sediment pollution in aquaculture farms. Previous studies have revealed the short-term influence of wastewater drainage on the bacterial communities but the seasonal response of the sediment bacterial communities to wastewater drainage from aquaculture farms remains unclear. This study used the 16S rRNA approach to explore the profiles of bacterial communities over four seasons in a typical crab aquaculture farm that included a pond and an outlet ditch. Nineteen sediment samples and an equal number of water samples were collected and analysed during spring, summer, autumn, and winter during 2018-19. Our results showed that Proteobacteria, Chloroflexi, and Bacteroides were the predominant phyla in aquaculture pond sediment with the relative abundance of 28.95%, 17.32%, and 15.31%, respectively. The relative abundance of Proteobacteria and Bacteroides was higher in autumn and winter, and the relative abundance of Chloroflexi was highest in spring. The Shannon diversity index value ranged from 6.17 to 9.30 and showed significant positive correlation (P < 0.01) with the concentrations of TN, NH4+-N, and TP in the water. The variation in the bacterial community and relative abundance in outlet ditch sediment were consistent with those in the pond sediment. Our results show that determinisation of the bacterial community composition in the outlet ditch sediment provides a novel tool to monitor watersheds sensitive to the influence of aquacultures.
Collapse
Affiliation(s)
- Xiaoxiao Shen
- College of Agricultural Engineering, HoHai University, Nanjing 210098, PR China
| | - Ming Xu
- College of Agricultural Engineering, HoHai University, Nanjing 210098, PR China
| | - Ming Li
- College of Agricultural Engineering, HoHai University, Nanjing 210098, PR China
| | - Yongjun Zhao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiaohou Shao
- College of Agricultural Engineering, HoHai University, Nanjing 210098, PR China.
| |
Collapse
|
5
|
Yang Y, Chen J, Tong T, Xie S, Liu Y. Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114106. [PMID: 32041086 DOI: 10.1016/j.envpol.2020.114106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|