1
|
Chen X, Moran Torres JP, Tedjai SVK, Lugones LG, Wösten HAB. Functional analysis of FlbA-regulated transcription factor genes in Aspergillus niger using a multiplexed CRISPRoff system. Int J Biol Macromol 2024; 277:134326. [PMID: 39089555 DOI: 10.1016/j.ijbiomac.2024.134326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
FlbA of Aspergillus niger (indirectly) regulates 36 transcription factor (TF) genes. As a result, it promotes sporulation and represses vegetative growth, protein secretion and lysis. In this study, the functions of part of the FlbA-regulated TF genes were studied by using CRISPRoff. This system was recently introduced as an epigenetic tool for modulating gene expression in A. niger. A plasmid encompassing an optimized CRISPRoff system as well as a library of sgRNA genes that target the promoters of the 36 FlbA-regulated TF genes was introduced in A. niger. Out of 24 transformants that exhibited a sporulation phenotype, 12 and 18 strains also showed a biomass and secretion phenotype, respectively. The transforming sgRNAs, and thus the genes responsible for the phenotypes, were identified from five of the transformants. The results show that the genes dofA, dofB, dofC, dofD, and socA are involved in sporulation and extracellular enzyme activity, while dofA and socA also play roles in biomass formation. Overall, this study shows that the multiplexed CRISPRoff system can be effectively used for functional analysis of genes in a fungus.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - S Vyanjan K Tedjai
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Chen X, Moran Torres JP, Jan Vonk P, Damen JMA, Reiding KR, Dijksterhuis J, Lugones LG, Wösten HAB. The pleiotropic phenotype of FlbA of Aspergillus niger is explained in part by the activity of seven of its downstream-regulated transcription factors. Fungal Genet Biol 2024; 172:103894. [PMID: 38657897 DOI: 10.1016/j.fgb.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
3
|
Canoy TS, Wiedenbein ES, Bredie WLP, Meyer AS, Wösten HAB, Nielsen DS. Solid-State Fermented Plant Foods as New Protein Sources. Annu Rev Food Sci Technol 2024; 15:189-210. [PMID: 38109492 DOI: 10.1146/annurev-food-060721-013526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.
Collapse
Affiliation(s)
- Tessa S Canoy
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | | | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ,
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
4
|
Wang W, Liang X, Li Y, Wang P, Keller NP. Genetic Regulation of Mycotoxin Biosynthesis. J Fungi (Basel) 2022; 9:jof9010021. [PMID: 36675842 PMCID: PMC9861139 DOI: 10.3390/jof9010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination in food poses health hazards to humans. Current methods of controlling mycotoxins still have limitations and more effective approaches are needed. During the past decades of years, variable environmental factors have been tested for their influence on mycotoxin production leading to elucidation of a complex regulatory network involved in mycotoxin biosynthesis. These regulators are putative targets for screening molecules that could inhibit mycotoxin synthesis. Here, we summarize the regulatory mechanisms of hierarchical regulators, including pathway-specific regulators, global regulators and epigenetic regulators, on the production of the most critical mycotoxins (aflatoxins, patulin, citrinin, trichothecenes and fumonisins). Future studies on regulation of mycotoxins will provide valuable knowledge for exploring novel methods to inhibit mycotoxin biosynthesis in a more efficient way.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence: (W.W.); (N.P.K.)
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (W.W.); (N.P.K.)
| |
Collapse
|
5
|
Yli-Mattila T, Sundheim L. Fumonisins in African Countries. Toxins (Basel) 2022; 14:toxins14060419. [PMID: 35737080 PMCID: PMC9228379 DOI: 10.3390/toxins14060419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Maize and other cereals are the commodities most contaminated with fumonisins. The maize acreage is increasing in Africa, and the maize harvest provides important foods for humans and feeds for domestic animals throughout the continent. In North Africa, high levels of fumonisins have been reported from Algeria and Morocco, while low levels have been detected in the rather few fumonisin analyses reported from Tunisia and Egypt. The West African countries Burkina Faso, Cameroon, Ghana, and Nigeria all report high levels of fumonisin contamination of maize, while the few maize samples analysed in Togo contain low levels. In Eastern Africa, high levels of fumonisin contamination have been reported from the Democratic Republic of Congo, Ethiopia, Kenya, Tanzania, and Uganda. The samples analysed from Rwanda contained low levels of fumonisins. Analysis of maize from the Southern African countries Malawi, Namibia, South Africa, Zambia, and Zimbabwe revealed high fumonisin levels, while low levels of fumonisins were detected in the few analyses of maize from Botswana and Mozambique.
Collapse
Affiliation(s)
- Tapani Yli-Mattila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
- Correspondence: ; Tel.: 358-440560700
| | - Leif Sundheim
- Norwegian Institute for Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway;
| |
Collapse
|
6
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
7
|
Abstract
Microbial research in space is being conducted for almost 50 years now. The closed system of the International Space Station (ISS) has acted as a microbial observatory for the past 10 years, conducting research on adaptation and survivability of microorganisms exposed to space conditions. This adaptation can be either beneficial or detrimental to crew members and spacecraft. Therefore, it becomes crucial to identify the impact of two primary stress conditions, namely, radiation and microgravity, on microbial life aboard the ISS. Elucidating the mechanistic basis of microbial adaptation to space conditions aids in the development of countermeasures against their potentially detrimental effects and allows us to harness their biotechnologically important properties. Several microbial processes have been studied, either in spaceflight or using devices that can simulate space conditions. However, at present, research is limited to only a few microorganisms, and extensive research on biotechnologically important microorganisms is required to make long-term space missions self-sustainable.
Collapse
Affiliation(s)
- Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Elisa Stephens
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Lilly M, Rheeder J, Proctor R, Gelderblom W. FUM gene expression and variation in fumonisin production of clonal isolates of Fusarium verticillioides MRC 826. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B-series fumonisins (FBs) are a family of carcinogenic mycotoxins that commonly occur in maize. These mycotoxins cause multiple diseases in animals and are epidemiologically associated with several human diseases in populations for which maize is a dietary staple. FBs are produced by multiple genera of the fungi Aspergillus, Fusarium and Tolypocladium, but the plant pathogen Fusarium verticillioides is considered the primary cause of FB contamination in maize. One F. verticillioides strain, MRC 826, is reported to produce high levels of FBs. However, in the current study, 18 isolates derived from strain MRC 826 exhibited highly variable levels of FB, which negatively correlated (r=-0.333; P<0.008) with fungal growth. Microsatellite analysis confirmed that all MRC 826 derived isolates examined were clonal, and 100% DNA sequence identity was observed across the FUM gene clusters of two high FB producing and two low FB producing isolates. At the gene expression level, qRT-PCR at each time point (7, 14, 21 and 28 days of incubation) showed differential upregulation of selected FUM genes in the high compared to the low FB isolates. Variation in FB production appears due to differences in FUM gene expression, most likely caused by sequence differences at unexamined loci not part of the FUM cluster or from epigenetic influences. Clarification of the genetic/epigenetic basis for quantitative differences in fumonisin production among strains and isolates of F. verticillioides has potential to reveal targets for reducing FB contamination in maize.
Collapse
Affiliation(s)
- M. Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - J.P. Rheeder
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - R.H. Proctor
- US Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA
| | - W.C.A. Gelderblom
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X9, 7602 Matieland, South Africa
| |
Collapse
|
9
|
Yan H, Zhou Z, Shim WB. Two regulators of G-protein signaling (RGS) proteins FlbA1 and FlbA2 differentially regulate fumonisin B1 biosynthesis in Fusarium verticillioides. Curr Genet 2021; 67:305-315. [PMID: 33392742 DOI: 10.1007/s00294-020-01140-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Fumonisins are a group of mycotoxins produced by maize pathogen Fusarium verticillioides that pose health concerns to humans and animals. Yet we still lack a clear understanding of the mechanism of fumonisins regulation during pathogenesis. The heterotrimeric G protein complex, which consists of canonical subunits and various regulators of G-protein signaling (RGS) proteins, plays an important role in transducing signals under environmental stress. Earlier studies demonstrated that Gα and Gβ subunits are positive regulators of fumonisin B1 (FB1) biosynthesis and that two RGS genes, FvFlbA1 and FvFlbA2, were highly upregulated in Gβ deletion mutant ∆Fvgbb1. Notably, FvFlbA2 has a negative role in FB1 regulation. While many fungi contain a single copy of FlbA, F. verticillioides harbors two putative FvFlbA paralogs, FvFlbA1 and FvFlbA2. In this study, we further characterized functional roles of FvFlbA1 and FvFlbA2. While ∆FvflbA1 deletion mutant exhibited no significant defects, ∆FvflbA2 and ∆FvflbA2/A1 mutants showed thinner aerial hyphal growth while promoting FB1 production. FvFlbA2 is required for proper expression of key conidia regulation genes, including putative FvBRLA, FvWETA, and FvABAA, while suppressing FUM21, FUM1, and FUM8 expression. Split luciferase assays determined that FvFlbA paralogs interact with key heterotrimeric G protein components, which in turn will lead altered G-protein-mediated signaling pathways that regulate FB1 production and asexual development in F. verticillioides.
Collapse
Affiliation(s)
- Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Romsdahl J, Blachowicz A, Chiang YM, Venkateswaran K, Wang CCC. Metabolomic Analysis of Aspergillus niger Isolated From the International Space Station Reveals Enhanced Production Levels of the Antioxidant Pyranonigrin A. Front Microbiol 2020; 11:931. [PMID: 32670208 PMCID: PMC7326050 DOI: 10.3389/fmicb.2020.00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Secondary metabolite (SM) production in Aspergillus niger JSC-093350089, isolated from the International Space Station (ISS), is reported, along with a comparison to the experimentally established strain ATCC 1015. The analysis revealed enhanced production levels of naphtho-γ-pyrones and therapeutically relevant SMs, including bicoumanigrin A, aurasperones A and B, and the antioxidant pyranonigrin A. Genetic variants that may be responsible for increased SM production levels in JSC-093350089 were identified. These findings include INDELs within the predicted promoter region of flbA, which encodes a developmental regulator that modulates pyranonigrin A production via regulation of Fum21. The pyranonigrin A biosynthetic gene cluster was confirmed in A. niger, which revealed the involvement of a previously undescribed gene, pyrE, in its biosynthesis. UVC sensitivity assays enabled characterization of pyranonigrin A as a UV resistance agent in the ISS isolate.
Collapse
Affiliation(s)
- Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Mahmoudjanlou Y, Hoff B, Kück U. Construction of a Codon-Adapted Nourseotricin-Resistance Marker Gene for Efficient Targeted Gene Deletion in the Mycophenolic Acid Producer Penicillium brevicompactum. J Fungi (Basel) 2019; 5:E96. [PMID: 31658687 PMCID: PMC6958462 DOI: 10.3390/jof5040096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022] Open
Abstract
Penicillium brevicompactum is a filamentous ascomycete used in the pharmaceutical industry to produce mycophenolic acid, an immunosuppressant agent. To extend options for genetic engineering of this fungus, we have tested two resistance markers that have not previously been applied to P. brevicompactum. Although a generally available phleomycin resistance marker (ble) was successfully used in DNA-mediated transformation experiments, we were not able to use a commonly applicable nourseothricin resistance cassette (nat1). To circumvent this failure, we constructed a new nat gene, considering the codon bias for P. brevicompactum. We then used this modified nat gene in subsequent transformation experiments for the targeted disruption of two nuclear genes, MAT1-2-1 and flbA. For MAT1-2-1, we obtained deletion strains with a frequency of about 10%. In the case of flbA, the frequency was about 4%, and this disruption strain also showed reduced conidiospore formation. To confirm the deletion, we used ble to reintroduce the wild-type genes. This step restored the wild-type phenotype in the flbA deletion strain, which had a sporulation defect. The successful transformation system described here substantially extends options for genetically manipulating the biotechnologically relevant fungus P. brevicompactum.
Collapse
Affiliation(s)
| | - Birgit Hoff
- Allgemeine & Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
13
|
Bosnjak N, Smith KM, Asaria I, Lahola-Chomiak A, Kishore N, Todd AT, Freitag M, Nargang FE. Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa. G3 (BETHESDA, MD.) 2019; 9:3453-3465. [PMID: 31444295 PMCID: PMC6778808 DOI: 10.1534/g3.119.400522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, aod-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa, that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
Collapse
Affiliation(s)
- Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Iman Asaria
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Adrian Lahola-Chomiak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Nishka Kishore
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Andrea T Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| |
Collapse
|
14
|
Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol 2019; 59:65-70. [DOI: 10.1016/j.copbio.2019.02.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 02/02/2023]
|
15
|
Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: A review. Int Microbiol 2019; 23:89-96. [DOI: 10.1007/s10123-019-00084-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
16
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
17
|
FlbA-Regulated Gene rpnR Is Involved in Stress Resistance and Impacts Protein Secretion when Aspergillus niger Is Grown on Xylose. Appl Environ Microbiol 2019; 85:AEM.02282-18. [PMID: 30413474 DOI: 10.1128/aem.02282-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 11/20/2022] Open
Abstract
Proteins are secreted throughout the mycelium of Aspergillus niger except for the sporulating zone. A link between sporulation and repression of protein secretion was underlined by the finding that inactivation of the sporulation gene flbA results in mycelial colonies that secrete proteins throughout the colony. However, ΔflbA strain hyphae also lyse and have thinner cell walls. This pleiotropic phenotype is associated with differential expression of 36 predicted transcription factor genes, one of which, rpnR, was inactivated in this study. Sporulation, biomass, and secretome complexity were not affected in the ΔrpnR deletion strain of the fungus. In contrast, ribosomal subunit expression and protein secretion into the medium were reduced when A. niger was grown on xylose. Moreover, the ΔrpnR strain showed decreased resistance to H2O2 and the proteotoxic stress-inducing agent dithiothreitol. Taking the data together, RpnR is involved in proteotoxic stress resistance and impacts protein secretion when A. niger is grown on xylose.IMPORTANCE Aspergillus niger secretes a large amount and diversity of industrially relevant enzymes into the culture medium. This makes the fungus a widely used industrial cell factory. For instance, carbohydrate-active enzymes of A. niger are used in biofuel production from lignocellulosic feedstock. These enzymes represent a major cost factor in this process. Higher production yields could substantially reduce these costs and therefore contribute to a more sustainable economy and less dependence on fossil fuels. Enzyme secretion is inhibited in A. niger by asexual reproduction. The sporulation protein FlbA is involved in this process by impacting the expression of 36 predicted transcription factor genes. Here, we show that one of these predicted transcriptional regulators, RpnR, regulates protein secretion and proteotoxic stress resistance. The gene is thus an interesting target to improve enzyme production in A. niger.
Collapse
|
18
|
Lindo L, McCormick SP, Cardoza RE, Kim HS, Brown DW, Alexander NJ, Proctor RH, Gutiérrez S. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet Biol 2019; 122:31-46. [DOI: 10.1016/j.fgb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
|
19
|
Li C, Lin F, Sun W, Yuan S, Zhou Z, Wu FG, Chen Z. Constitutive hyperproduction of sorbicillinoids in Trichoderma reesei ZC121. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:291. [PMID: 30386428 PMCID: PMC6202828 DOI: 10.1186/s13068-018-1296-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/16/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND In addition to its outstanding cellulase production ability, Trichoderma reesei produces a wide variety of valuable secondary metabolites, the production of which has not received much attention to date. Among them, sorbicillinoids, a large group of hexaketide secondary metabolites derived from polyketides, are drawing a growing interest from researchers because they exhibit a variety of important biological functions, including anticancer, antioxidant, antiviral, and antimicrobial properties. The development of fungi strains with constitutive, hyperproduction of sorbicillinoids is thus desired for future industry application but is not well-studied. Moreover, although T. reesei has been demonstrated to produce sorbicillinoids with the corresponding gene cluster and biosynthesis pathway proposed, the underlying molecular mechanism governing sorbicillinoid biosynthesis remains unknown. RESULTS Recombinant T. reesei ZC121 was constructed from strain RUT-C30 by the insertion of the gene 12121-knockout cassette at the telomere of T. reesei chromosome IV in consideration of the off-target mutagenesis encountered during the unsuccessful deletion of gene 121121. Strain ZC121, when grown on cellulose, showed a sharp reduction of cellulase production, but yet a remarkable enhancement of sorbicillinoids production as compared to strain RUT-C30. The hyperproduction of sorbicillinoids is a constitutive process, independent of culture conditions such as carbon source, light, pH, and temperature. To the best of our knowledge, strain ZC121 displays record sorbicillinoid production levels when grown on both glucose and cellulose. Sorbicillinol and bisvertinolone are the two major sorbicillinoid compounds produced. ZC121 displayed a different morphology and markedly reduced sporulation compared to RUT-C30 but had a similar growth rate and biomass. Transcriptome analysis showed that most genes involved in cellulase production were downregulated significantly in ZC121 grown on cellulose, whereas remarkably all genes in the sorbicillinoid gene cluster were upregulated on both cellulose and glucose. CONCLUSION A constitutive sorbicillinoid-hyperproduction strain T. reesei ZC121 was obtained by off-target mutagenesis, displaying an overwhelming shift from cellulase production to sorbicillinoid production on cellulose, leading to a record for sorbicillinoid production. For the first time, T. reesei degraded cellulose to produce platform chemical compounds other than protein in high yield. We propose that the off-target mutagenesis occurring at the telomere region might cause chromosome remodeling and subsequently alter the cell structure and the global gene expression pattern of strain ZC121, as shown by phenotype profiling and comparative transcriptome analysis of ZC121. Overall, T. reesei ZC121 holds great promise for the industrial production of sorbicillinoids and serves as a good model to explore the regulation mechanism of sorbicillinoids' biosynthesis.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
- Nanjing, China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Shaoxun Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|