1
|
Jia F, Peng X, Yang X, Qiu S, Jia S, Ran T, Wang W, Xu D. PqqF inhibits T6SS secretion by decreasing the pH in Serratia marcescens FS14. FEMS Microbiol Lett 2024; 371:fnae047. [PMID: 38908910 DOI: 10.1093/femsle/fnae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.
Collapse
Affiliation(s)
- Fengyu Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuede Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shanshan Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
2
|
Yan J, Yang B, Xue X, Li J, Li Y, Li A, Ding P, Cao B. Transcriptome Analysis Reveals the Effect of PdhR in Plesiomonas shigelloides. Int J Mol Sci 2023; 24:14473. [PMID: 37833920 PMCID: PMC10572922 DOI: 10.3390/ijms241914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinghao Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- College of Pharmacy Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|
3
|
BarA/UvrY differentially regulates prodigiosin biosynthesis and swarming motility in Serratia marcescens FS14. Res Microbiol 2023; 174:104010. [PMID: 36410584 DOI: 10.1016/j.resmic.2022.104010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
BarA/UvrY, a two-component system and global regulator that controls expression of more than a hundred of genes involved in virulence, motility, biofilm formation, and central carbon metabolism under various stress conditions. In this study, we investigated the function of BarA/UvrY system in Serratia marcescens FS14. The disruption of barA or/and uvrY results in the yield increase of secondary metabolite prodigiosin. We further demonstrated that BarA/UvrY system represses prodigiosin production by inhibiting the transcription level of pig gene cluster with direct binding to the pigA promoter. In addition, deletion of barA or/and uvrY abolished the swarming motility of FS14, but not the swimming motility. We revealed that BarA/UvrY activates swarming through directly upregulating the expression of the biosurfactant synthesis gene swrW rather than flagella system. We also observed that BarA/UvrY positively regulates the resistance to H2O2 same as in Escherichia coli highlighting the importance of BarA/UvrY on hydrogen peroxide resistance. Our results demonstrated that the BarA/UvrY system differentially regulates the biosynthesis of the secondary metabolite prodigiosin and swarming motility in S. marcescens FS14. Comparison of our results with those observed for Serratia sp. 39006 suggests that BarA/UvrY's role in regulation of secondary metabolite production is different among Serratia species.
Collapse
|
4
|
Yin L, Zhang PP, Wang W, Tang S, Deng SM, Jia AQ. 3-Phenylpropan-1-Amine Enhanced Susceptibility of Serratia marcescens to Ofloxacin by Occluding Quorum Sensing. Microbiol Spectr 2022; 10:e0182922. [PMID: 35972277 PMCID: PMC9603881 DOI: 10.1128/spectrum.01829-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 12/31/2022] Open
Abstract
Serratia marcescens (S. marcescens) is an environmental bacterium that causes infections with high morbidity and mortality. Notably, infections caused by multidrug-resistant S. marcescens have become a global public health issue. Therefore, the discovery of promising compounds to reduce the virulence of pathogens and restore antibiotic activity against multidrug-resistant bacteria is critical. Quorum sensing (QS) regulates virulence factors and biofilm formation of microorganisms to increase their pathogenicity and is, therefore, an important factor in the formation of multidrug resistance. In this study, we found that 3-phenylpropan-1-amine (3-PPA) inhibited S. marcescens NJ01 biofilm formation and virulence factors, including prodigiosin, protease, lipase, hemolysin, and swimming. The combination of 3-PPA (50.0 μg/mL) and ofloxacin (0.2 μg/mL) enhanced S. marcescens NJ01 sensitivity to ofloxacin. Based on crystalline violet staining, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), 3-PPA (50.0 μg/mL) reduced S. marcescens NJ01 biofilm formation by 48%. Quantitative real-time PCR (qRT-PCR) showed that 3-PPA regulated the expression of virulence- and biofilm-related genes fimA, fimC, bsmB, pigP, flhC, flhD, and sodB. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that 3-PPA affected intracellular metabolites of S. marcescens NJ01, leading to reduce metabolic activity. These results suggested that 3-PPA inhibits the pathogenicity of S. marcescens NJ01 by occluding QS. Thus, 3-PPA is feasible as an ofloxacin adjuvant to overcome multidrug-resistant S. marcescens and improve the treatment of intractable infections. IMPORTANCE Multidrug-resistant bacteria have become a major threat to global public health, leading to increased morbidity, mortality, and health care costs. Bacterial virulence factors and biofilms, which are regulated by quorum sensing (QS), are the primary causes of multidrug resistance. In this study, 3-PPA reduced virulence factors and eliminated biofilm formation by inhibiting QS in S. marcescens NJ01 bacteria, without affecting bacterial growth, thus restoring sensitivity to ofloxacin. Thus, the discovery of compounds that can restore antibiotic activity against bacteria is a promising strategy to mitigate multidrug resistance in pathogens.
Collapse
Affiliation(s)
- Lujun Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Ping-Ping Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shi-Ming Deng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
5
|
Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X, Zhang L, Zhou J. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1033192. [PMID: 36340374 PMCID: PMC9634086 DOI: 10.3389/fpls.2022.1033192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sixuan Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Chen S, Hu M, Hu A, Xue Y, Wang S, Liu F, Li C, Zhou X, Zhou J. The integration host factor regulates multiple virulence pathways in bacterial pathogen Dickeya zeae MS2. MOLECULAR PLANT PATHOLOGY 2022; 23:1487-1507. [PMID: 35819797 PMCID: PMC9452768 DOI: 10.1111/mpp.13244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Dickeya zeae is an aggressive bacterial phytopathogen that infects a wide range of host plants. It has been reported that integration host factor (IHF), a nucleoid-associated protein consisting of IHFα and IHFβ subunits, regulates gene expression by influencing nucleoid structure and DNA bending. To define the role of IHF in the pathogenesis of D. zeae MS2, we deleted either and both of the IHF subunit encoding genes ihfA and ihfB, which significantly reduced the production of cell wall-degrading enzymes (CWDEs), an unknown novel phytotoxin and the virulence factor-modulating (VFM) quorum-sensing (QS) signal, cell motility, biofilm formation, and thereafter the infection ability towards both potato slices and banana seedlings. To characterize the regulatory pathways of IHF protein associated with virulence, IHF binding sites (consensus sequence 5'-WATCAANNNNTTR-3') were predicted and 272 binding sites were found throughout the genome. The expression of 110 tested genes was affected by IHF. Electrophoretic mobility shift assay (EMSA) showed direct interaction of IhfA protein with the promoters of vfmE, speA, pipR, fis, slyA, prtD, hrpL, hecB, hcp, indA, hdaA, flhD, pilT, gcpJ, arcA, arcB, and lysR. This study clarified the contribution of IHF in the pathogenic process of D. zeae by controlling the production of VFM and putrescine QS signals, phytotoxin, and indigoidine, the luxR-solo system, Fis, SlyA, and FlhD transcriptional regulators, and secretion systems from type I to type VI. Characterization of the regulatory networks of IHF in D. zeae provides a target for prevention and control of plant soft rot disease.
Collapse
Affiliation(s)
- Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Si Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Fan Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research Center, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Qiu S, Jia S, Zhang F, Liu X, Ran T, Wang W, Wang C, Xu D. Two component system CpxR/A regulates the prodigiosin biosynthesis by negative control in Serratia marcescens FS14. Biochem Biophys Res Commun 2021; 579:136-140. [PMID: 34600298 DOI: 10.1016/j.bbrc.2021.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Prodigiosin is a tripyrrole red secondary metabolite synthesized by many microorganisms, including Serratia marcescens. In this study, we found that the deletion of the gene of sensor kinase CpxA dramatically decreased the prodigiosin production, while the deletion of the gene of the response regulator CpxR or both genes of CpxRA has no effect on prodigiosin production, the kinase function of CpxA is not essential for its regulation on prodigiosin production while the phosphorylation site of CpxR is required. We further demonstrated that the CpxA regulates the prodigiosin biosynthesis at the transcriptional level and the phosphatase activity of CpxA plays vital roles in the regulation of prodigiosin biosynthesis. Finally, we proposed that CpxR/A regulates the prodigiosin biosynthesis by negative control and the phosphorylation level of CpxR may determine the positive or negative control of the genes it regulated.
Collapse
Affiliation(s)
- Shenshen Qiu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Jia
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xia Liu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Changlin Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China.
| | - Dongqing Xu
- Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Islam MM, Kim K, Lee JC, Shin M. LeuO, a LysR-Type Transcriptional Regulator, Is Involved in Biofilm Formation and Virulence of Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:738706. [PMID: 34708004 PMCID: PMC8543017 DOI: 10.3389/fcimb.2021.738706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that can survive in different environmental conditions and poses a severe threat to public health due to its multidrug resistance properties. Research on transcriptional regulators, which play an essential role in adjusting to new environments, could provide new insights into A. baumannii pathogenesis. LysR-type transcriptional regulators (LTTRs) are structurally conserved among bacterial species and regulate virulence in many pathogens. We identified a novel LTTR, designated as LeuO encoded in the A. baumannii genome. After construction of LeuO mutant strain, transcriptome analysis showed that LeuO regulates the expression of 194 upregulated genes and 108 downregulated genes responsible for various functions and our qPCR validation of several differentially expressed genes support transcriptome data. Our results demonstrated that disruption of LeuO led to increased biofilm formation and increased pathogenicity in an animal model. However, the adherence and surface motility of the LeuO mutant were reduced compared with those of the wild-type strain. We observed some mutations on amino acids sequence of LeuO in clinical isolates. These mutations in the A. baumannii biofilm regulator LeuO may cause hyper-biofilm in the tested clinical isolates. This study is the first to demonstrate the association between the LTTR member LeuO and virulence traits of A. baumannii.
Collapse
Affiliation(s)
- Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Yang B, Chu F, Li H, Wang W, Ran T, Xu D. RpoS Activates the Prodigionsin Production by Activating the Transcription of the RpoS-Dependent Pig Gene Cluster in Serratia marcescens FS14. Indian J Microbiol 2021; 61:355-363. [PMID: 34295001 DOI: 10.1007/s12088-021-00952-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
RpoS, an alternative sigma factor of RNA polymerase, regulates the expression of a great deal of genes involved in stationary-phase survival and stress response. To identify the function of RpoS homologue in Serratia marcescens FS14, in-frame deletion mutant of rpoS was constructed. It was found that RpoS activates the biosynthesis of prodigiosin in FS14 which is just opposite to what was observed in Serratia sp. ATCC 39006. We also demonstrated that RpoS positively regulates the prodigiosin production by activating the transcription of pig cluster in FS14, and the transcription of pig cluster is RpoS-dependent. Further study showed that the differences in the promoters of pig clusters in FS14 and 39006 lead to the different selection of the sigma factors and result in the different regulation mechanisms. The -10 element and the spacer region between -10 and -35 elements of the pig cluster in FS14 are vital for the RpoS recognition in FS14. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00952-4.
Collapse
Affiliation(s)
- Baoling Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fenglian Chu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haixia Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Luo HZ, Zhou JW, Sun B, Jiang H, Tang S, Jia AQ. Inhibitory effect of norharmane on Serratia marcescens NJ01 quorum sensing-mediated virulence factors and biofilm formation. BIOFOULING 2021; 37:145-160. [PMID: 33682541 DOI: 10.1080/08927014.2021.1874942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Serratia marcescens NJ01, a Gram-negative bacterium, can infect tomato leaves and cause chlorosis and wilting. The present study evaluated the quorum sensing (QS) and biofilm inhibitory effects of seven carboline compounds against S. marcescens NJ01 at 20 μg ml-1, and subsequently focused the study on norharmane as this had the best inhibitory activity. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed the down-regulation of QS and biofilm related genes bsmA, bsmB, fimA, fimC, flhD, pigA, pigC and shlA on exposure to norharmane. Fourier-Transform Infrared Spectroscopy (FT-IR) analysis showed a reduction in the major components of the exopolysaccharide (EPS) matrix such as nucleic acids, proteins and fatty acids, which are involved in forming the tertiary structure of biofilms. Norharmane exposure also enhanced the susceptibility of the biofilm to ofloxacin. Hence, norharmane has the potential for use as an antibiotic adjuvant to enhance the efficacy of conventional antibiotics to reduce pathogenic bacterial infections.
Collapse
Affiliation(s)
- Huai-Zhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| | - Jin-Wei Zhou
- School of Food (Biological) Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shi Tang
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School Life and Pharmaceutical Sciences, Engineering Research Center for Utilization of Tropical Polysaccharide Resources, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
11
|
LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H 2O 2 Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Appl Environ Microbiol 2020; 86:AEM.02241-19. [PMID: 31791952 DOI: 10.1128/aem.02241-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022] Open
Abstract
Prodigiosin, a secondary metabolite produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. However, information on the regulatory mechanism behind prodigiosin biosynthesis in S. marcescens remains limited. In this work, a prodigiosin-hyperproducing strain with the BVG90_22495 gene disrupted (ZK66) was selected from a collection of Tn5G transposon insertion mutants. Using real-time quantitative PCR (RT-qPCR) analysis, β-galactosidase assays, transcriptomics analysis, and electrophoretic mobility shift assays (EMSAs), the LysR-type regulator MetR encoded by the BVG90_22495 gene was found to affect prodigiosin synthesis, and this correlated with MetR directly binding to the promoter region of the prodigiosin-synthesis positive regulator PigP and hence negatively regulated the expression of the prodigiosin-associated pig operon. More analyses revealed that MetR regulated some other important cellular processes, including methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, exopolysaccharide synthesis, and biofilm formation in S. marcescens Although MetR protein is highly conserved in many bacteria, we report here on the LysR-type regulator MetR exhibiting novel roles in negatively regulating prodigiosin synthesis and positively regulating heat tolerance, exopolysaccharide synthesis, and biofilm formation.IMPORTANCE Serratia marcescens, a Gram-negative bacterium, is found in a wide range of ecological niches and can produce several secondary metabolites, including prodigiosin, althiomycin, and serratamolide. Among them, prodigiosin shows diverse functions as an immunosuppressant, antimicrobial, and anticancer agent. However, the regulatory mechanisms behind prodigiosin synthesis in S. marcescens are not completely understood. Here, we adapted a transposon mutant library to identify the genes related to prodigiosin synthesis, and the BVG90_22495 gene encoding the LysR-type regulator MetR was found to negatively regulate prodigiosin synthesis. The molecular mechanism of the metR mutant hyperproducing prodigiosin was investigated. Additionally, we provided evidence supporting new roles for MetR in regulating methionine biosynthesis, cell motility, heat tolerance, H2O2 tolerance, and exopolysaccharide synthesis in S. marcescens Collectively, this work provides novel insight into regulatory mechanisms of prodigiosin synthesis and uncovers novel roles for the highly conserved MetR protein in regulating prodigiosin synthesis, heat tolerance, exopolysaccharide (EPS) synthesis, and biofilm formation.
Collapse
|