1
|
Giroux L, Isayenka I, Lerat S, Beaudoin N, Beaulieu C. Proteomics fingerprinting reveals importance of iron and oxidative stress in Streptomyces scabies- Solanum tuberosum interactions. Front Microbiol 2024; 15:1466927. [PMID: 39417082 PMCID: PMC11479980 DOI: 10.3389/fmicb.2024.1466927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The Gram-positive actinobacterium Streptomyces scabies is the major causal agent of potato common scab. The main pathogenicity factor is thaxtomin A, a phytotoxin that causes atypical cell death, although other secondary metabolites have been described to play a role in S. scabies virulence. Despite this, many aspects of the interaction between S. scabies and its primary host Solanum tuberosum L. remain to be elucidated. Methods Intracellular proteins of S. scabies EF-35 grown in the presence of in vitro produced tubers (microtubers) of the Russet Burbank and Yukon Gold potato cultivars were extracted and analysed by electrospray mass spectrometry (ES MS/MS). Based on the results of proteomic analysis, iron quantification by ICP-MS and nitrite quantification using Griess reagent in growth media as well as RT-qPCR analysis of the siderophore pyochelin gene expression were performed in the presence and absence of microtubers. Hydrogen peroxide accumulation was also determined in the nutrient medium used for co-cultivation of bacteria and potato microtubers. Results Potato microtubers caused an increase in the content of bacterial proteins involved in stress and defense, secondary metabolism, and cell differentiation, as well as secreted proteins. Co-cultivation with potato microtubers induced the accumulation of S. scabies proteins implicated in siderophore pyochelin biosynthesis, nitrite production and oxidative stress perception and response. The increase in the abundance of proteins related to pyochelin biosynthesis was consistent with a significant decrease in the iron content in the culture medium, as well as with induction of expression of pyochelin biosynthesis genes. Elevated nitrite/sulfite reductase protein levels were associated with increased nitrite excretion by S. scabies cells in the presence of host microtubers. The increase in the levels of proteins associated with signaling and oxidative stress response could have been caused by the accumulation of ROS, in particular hydrogen peroxide, detected in the studied system. Discussion These findings show that interactions of S. scabies with living potato microtubers induce the production of secondary metabolites, defense responses, and protection from oxidative stress. This study suggests the importance of iron during host - S. scabies interactions, resulting in competition between pathogen and its host.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
3
|
Xu T, Huangfu B, He X, Huang K. Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review. Cell Biol Toxicol 2024; 40:27. [PMID: 38693223 PMCID: PMC11062979 DOI: 10.1007/s10565-024-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.
Collapse
Affiliation(s)
- Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| |
Collapse
|
4
|
Thapa BB, Huo C, Budhathoki R, Chaudhary P, Joshi S, Poudel PB, Magar RT, Parajuli N, Kim KH, Sohng JK. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int J Mol Sci 2024; 25:4193. [PMID: 38673777 PMCID: PMC11050201 DOI: 10.3390/ijms25084193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.
Collapse
Affiliation(s)
- Bijaya Bahadur Thapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Pratiksha Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| |
Collapse
|
5
|
Haq IU, Mukhtar Z, Anwar-Ul-Haq M, Liaqat S. Deciphering host-pathogen interaction during Streptomyces spp. infestation of potato. Arch Microbiol 2023; 205:222. [PMID: 37149838 DOI: 10.1007/s00203-023-03560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
- Ayub Agricultural Research Institute, Faisalabad, Pakistan.
| | - Zahid Mukhtar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | | | - Sana Liaqat
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
6
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
7
|
Jez JM. Connecting primary and specialized metabolism: Amino acid conjugation of phytohormones by GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102194. [PMID: 35219141 DOI: 10.1016/j.pbi.2022.102194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases catalyze the ATP-dependent conjugation of phytohormones with amino acids. Traditionally, GH3 proteins are associated with synthesis of the bioactive jasmonate hormone (+)-7- iso -jasmonoyl-l-isoleucine (JA-Ile) and conjugation of indole-3-acetic acid (IAA) with amino acids that tag the hormone for degradation and/or storage. Modifications of JA and IAA by GH3 acyl acid amido synthetases help maintain phytohormones homeostasis. Recent studies broaden the roles of GH3 proteins to include the regulation of JA biosynthesis; the modification of other auxins (i.e., phenylacetic acid and indole-3-butyric acid); the conjugation of auxinic herbicides, such as 4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, and dicamba; and the missing step in the isochorismate pathway for the biosynthesis of salicylic acid. The GH3 protein family joins the growing number of versatile enzyme families that blur the line between primary and specialized metabolism for an increasing range of biology functions.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA.
| |
Collapse
|
8
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
Deflandre B, Stulanovic N, Planckaert S, Anderssen S, Bonometti B, Karim L, Coppieters W, Devreese B, Rigali S. The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microb Genom 2022; 8. [PMID: 35040428 PMCID: PMC8914351 DOI: 10.1099/mgen.0.000760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87–22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87–22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the ‘green light’ to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs’ expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.
Collapse
Affiliation(s)
- Benoit Deflandre
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Sinaeda Anderssen
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Beatrice Bonometti
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| | - Latifa Karim
- Genomics Platform, GIGA, University of Liège, B-4000, Liège, Belgium
| | - Wouter Coppieters
- Genomics Platform, GIGA, University of Liège, B-4000, Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000, Ghent, Belgium
| | - Sébastien Rigali
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
11
|
Hudec C, Biessy A, Novinscak A, St-Onge R, Lamarre S, Blom J, Filion M. Comparative Genomics of Potato Common Scab-Causing Streptomyces spp. Displaying Varying Virulence. Front Microbiol 2021; 12:716522. [PMID: 34413844 PMCID: PMC8369830 DOI: 10.3389/fmicb.2021.716522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Common scab of potato causes important economic losses worldwide following the development of necrotic lesions on tubers. In this study, the genomes of 14 prevalent scab-causing Streptomyces spp. isolated from Prince Edward Island, one of the most important Canadian potato production areas, were sequenced and annotated. Their phylogenomic affiliation was determined, their pan-genome was characterized, and pathogenic determinants involved in their virulence, ranging from weak to aggressive, were compared. 13 out of 14 strains clustered with Streptomyces scabiei, while the last strain clustered with Streptomyces acidiscabies. The toxicogenic and colonization genomic regions were compared, and while some atypical gene organizations were observed, no clear correlation with virulence was observed. The production of the phytotoxin thaxtomin A was also quantified and again, contrary to previous reports in the literature, no clear correlation was found between the amount of thaxtomin A secreted, and the virulence observed. Although no significant differences were observed when comparing the presence/absence of the main virulence factors among the strains of S. scabiei, a distinct profile was observed for S. acidiscabies. Several mutations predicted to affect the functionality of some virulence factors were identified, including one in the bldA gene that correlates with the absence of thaxtomin A production despite the presence of the corresponding biosynthetic gene cluster in S. scabiei LBUM 1485. These novel findings obtained using a large number of scab-causing Streptomyces strains are challenging some assumptions made so far on Streptomyces’ virulence and suggest that other factors, yet to be characterized, are also key contributors.
Collapse
Affiliation(s)
- Cindy Hudec
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
12
|
Liu J, Nothias LF, Dorrestein PC, Tahlan K, Bignell DRD. Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen Streptomyces scabiei. ACS OMEGA 2021; 6:11474-11487. [PMID: 34056303 PMCID: PMC8153979 DOI: 10.1021/acsomega.1c00526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
Streptomyces scabiei is a key causative agent of common scab disease, which causes significant economic losses to potato growers worldwide. This organism produces several phytotoxins that are known or suspected to contribute to host-pathogen interactions and disease development; however, the full metabolic potential of S. scabiei has not been previously investigated. In this study, we used a combined metabolomic and genomic approach to investigate the metabolites that are produced by S. scabiei. The genome sequence was analyzed using antiSMASH and DeepBGC to identify specialized metabolite biosynthetic gene clusters. Using untargeted liquid chromatography-coupled tandem mass spectrometry (LC-MS2), the metabolic profile of S. scabiei was compared after cultivation on three different growth media. MS2 data were analyzed using Feature-Based Molecular Networking and hierarchical clustering in BioDendro. Metabolites were annotated by performing a Global Natural Products Social Molecular Networking (GNPS) spectral library search or using Network Annotation Propagation, SIRIUS, MetWork, or Competitive Fragmentation Modeling for Metabolite Identification. Using this approach, we were able to putatively identify new analogues of known metabolites as well as molecules that were not previously known to be produced by S. scabiei. To our knowledge, this study represents the first global analysis of specialized metabolites that are produced by this important plant pathogen.
Collapse
Affiliation(s)
- Jingyu Liu
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Louis-Félix Nothias
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California
San Diego, La Jolla, San Diego, California 92093, United States
| | - Pieter C. Dorrestein
- Collaborative
Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
Pharmaceutical Sciences, University of California
San Diego, La Jolla, San Diego, California 92093, United States
| | - Kapil Tahlan
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Dawn R. D. Bignell
- Department
of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| |
Collapse
|
13
|
Croce V, López-Radcenco A, Lapaz MI, Pianzzola MJ, Moyna G, Siri MI. An Integrative Approach for the Characterization of Plant-Pathogenic Streptomyces spp. Strains Based on Metabolomic, Bioactivity, and Phylogenetic Analysis. Front Microbiol 2021; 12:643792. [PMID: 33828541 PMCID: PMC8019742 DOI: 10.3389/fmicb.2021.643792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022] Open
Abstract
Actinomycetes are generally recognized as a diverse group of gram-positive, mycelium-forming, soil bacteria that play an important role in mineralization processes and plant health, being Streptomyces the most well-known genus from this group. Although plant pathogenicity is a rare attribute in this genus, some species have significant impact worldwide due to their ability to cause important crop diseases such as potato common scab (CS). In this work, an integrative approach was applied to investigate the pathogenic potential of Streptomyces spp. isolates obtained from a local collection of actinomycetes isolated from potato fields. Secretion of phytotoxic compounds was verified in most pathogenic strains from our collection (27 out of 29), and we followed metabolomic analysis to investigate those phytotoxins. We first evaluated the production of the known phytotoxins thaxtomin A (TXT) and desmethylmensacarcin (DMSN) in phytotoxic Streptomyces spp. by HPLC analysis, resulting in 17 TXT and 6 DMSN producers. In addition, NMR-based metabolomic models were able to classify strains according to their phytotoxicity, and metabolomic data was also used to infer chemotaxonomy within pathogenic species. A correlation between phylogeny and the production of distinct phytotoxins was found, supporting the idea that there are “species specific” metabolites produced by this genus. The recently discovered polyketide DMSN was associated unequivocally with S. niveiscabiei strains and was not produced by other species in the growth conditions employed. Two S. niveiscabiei and two S. puniciscabiei phytotoxic strains that did not produce TXT nor DMSN suggest the production of other kind of metabolites involved in phytotoxicity, and allowed the prioritization of these strains for further chemical studies. Indeed, we found two S. niveiscabiei strains whose supernatants were not phytotoxic in the radish assay, suggesting other pathogenic mechanisms involved. We believe our work will be useful to help understand relations between metabolites and phylogenetic clades within actinomycetes.
Collapse
Affiliation(s)
- Valentina Croce
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,Programa de Posgrado de la Facultad de Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrés López-Radcenco
- Programa de Posgrado de la Facultad de Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - María Inés Lapaz
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Julia Pianzzola
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Moyna
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
He Y, Yu S, Liu S, Tian H, Yu C, Tan W, Zhang J, Li Z, Jiang F, Duan L. Data-Independent Acquisition Proteomics Unravels the Effects of Iron Ions on Coronatine Synthesis in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2020; 11:1362. [PMID: 32793123 PMCID: PMC7385143 DOI: 10.3389/fmicb.2020.01362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Coronatine (COR) is a new type of plant growth regulator that is produced by Pseudomonas syringae pathovars and plays an important role in modulating plant growth, development, and tolerance to multiple stresses. However, the factors affecting COR production are not very clear. In this study, the effects of FeCl3 on COR production were researched. The data-independent acquisition (DIA) approach, which is a proteomic quantitative analysis method, was applied to quantitatively trace COR production and proteomic changes in P. syringae pv. tomato DC3000 under different FeCl3 culture conditions. The results showed that COR production increased with the addition of FeCl3 and that there was significant upregulation in the expression of proteins related to COR synthesis and regulation. In addition, FeCl3 also affected the expression of related proteins involved in various metabolic pathways such as glycolysis and the tricarboxylic acid cycle. Moreover, various precursors such as isoleucine and succinate semialdehyde, as well as other related proteins involved in the COR synthesis pathway, were significantly differentially expressed. Our findings revealed the dynamic regulation of COR production in response to FeCl3 at the protein level and showed the potential of using the DIA method to track the dynamic changes of the P. syringae pv. tomato DC3000 proteome during COR production, providing an important reference for future research on the regulatory mechanism of COR biosynthesis and theoretical support for COR fermentation production.
Collapse
Affiliation(s)
- Yan He
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sha Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shaojin Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hao Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunxin Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiming Tan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Jiang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Horticulture, China Agricultural University, Beijing, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Scalschi L, Llorens E, García-Agustín P, Vicedo B. Role of Jasmonic Acid Pathway in Tomato Plant- Pseudomonas syringae Interaction. PLANTS 2020; 9:plants9020136. [PMID: 31978963 PMCID: PMC7076678 DOI: 10.3390/plants9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022]
Abstract
The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae.
Collapse
|
16
|
Cheng Z, Bown L, Piercey B, Bignell DRD. Positive and Negative Regulation of the Virulence-Associated Coronafacoyl Phytotoxin in the Potato Common Scab Pathogen Streptomyces scabies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1348-1359. [PMID: 31107631 DOI: 10.1094/mpmi-03-19-0070-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potato common scab pathogen Streptomyces scabies produces N-coronafacoyl-l-isoleucine (CFA-Ile), which is a member of the coronafacoyl family of phytotoxins that are synthesized by multiple plant pathogenic bacteria. The CFA-Ile biosynthetic gene cluster contains a regulatory gene, cfaR, which directly controls the expression of the phytotoxin structural genes. In addition, a gene designated orf1 encodes a predicted ThiF family protein and is cotranscribed with cfaR, suggesting that it also plays a role in the regulation of CFA-Ile production. In this study, we demonstrated that CfaR is an essential activator of coronafacoyl phytotoxin production, while ORF1 is dispensable for phytotoxin production and may function as a helper protein for CfaR. We also showed that CFA-Ile inhibits the ability of CfaR to bind to the promoter region driving expression of the phytotoxin biosynthetic genes and that elevated CFA-Ile production by overexpression of both cfaR and orf1 in S. scabies increases the severity of disease symptoms induced by the pathogen during colonization of potato tuber tissue. Overall, our study reveals novel insights into the regulatory mechanisms controlling CFA-Ile production in S. scabies and it provides further evidence that CFA-Ile is an important virulence factor for this organism.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Brandon Piercey
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
17
|
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. MICROBIOLOGY-SGM 2019; 165:1025-1040. [PMID: 31162023 DOI: 10.1099/mic.0.000818] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Gustavo Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|