1
|
Tirumalai MR. Education and public outreach: communicating science through storytelling. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0020923. [PMID: 38661406 PMCID: PMC11044642 DOI: 10.1128/jmbe.00209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
Education and public outreach activities can be challenging for most active scientists, for very good reasons. Allotment of time to participate in outreach activities could be a major challenge. However, when such activities are incorporated into one's academic and research plan, they can be enriching. Here, the author describes his experience in what began as on one-off participation at an outreach event, leading to a series of speaking events addressing the public at the monthly meetings of several astronomy clubs/societies, observatories, etc. in the states of Texas, Louisiana, New Mexico, and Colorado. They have often involved the use of motifs and characters from popular science fiction, literature, and movies and when possible, getting the audience actively involved in the presentations. Furthermore, the discussions following each presentation have been enriching in terms of getting a broad perspective of the perceptions that people in general have, regarding the origins of life, microbiology, extremophiles, and astrobiology.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Dragone NB, Hoffert M, Strickland MS, Fierer N. Taxonomic and genomic attributes of oligotrophic soil bacteria. ISME COMMUNICATIONS 2024; 4:ycae081. [PMID: 38988701 PMCID: PMC11234899 DOI: 10.1093/ismeco/ycae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.
Collapse
Affiliation(s)
- Nicholas B Dragone
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael Hoffert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
3
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Tarasashvili MV, Elbakidze K, Doborjginidze ND, Gharibashvili ND. Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:65-77. [PMID: 37087180 DOI: 10.1016/j.lssr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
This article describes experiments performed to study the survival, growth, specific adaptations and bioremediation potential of certain extreme cyanobacteria strains within a simulation of the atmospheric composition, temperature and pressure expected in a future Martian greenhouse. Initial species have been obtained from Mars-analogue sites in Georgia. The results clearly demonstrate that specific biochemical adaptations allow these autotrophs to metabolize within AMG (Artificial Martian Ground) and accumulate biogenic carbon and nitrogen. These findings may thus contribute to the development of future Martian agriculture, as well as other aspects of the life-support systems at habitable Mars stations. The study shows that carbonate precipitation and nitrogen fixation, performed by cyanobacterial communities thriving within the simulated Martian greenhouse conditions, are cross-linked biological processes. At the same time, the presence of the perchlorates (at low concentrations) in the Martian ground may serve as the initial source of oxygen and, indirectly, hydrogen via photo-Fenton reactions. Various carbonates, ammonium and nitrate salts were obtained as the result of these experiments. These affect the pH, salinity and solubility of the AMG and its components, and so the AMG's scanty biogenic properties improved, which is essential for the sustainable growth of the agricultural crops. Therefore, the use of microorganisms for the biological remediation and continuous in situ fertilization of Artificial Martian Ground is possible.
Collapse
Affiliation(s)
- M V Tarasashvili
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia.
| | - Kh Elbakidze
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia
| | - N D Doborjginidze
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia
| | - N D Gharibashvili
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia; SpaceFarms Ltd, 14 Kostava Street, 0108, Tbilisi, Georgia
| |
Collapse
|
5
|
Park K, Kim CY, Kirk MF, Chae G, Kwon MJ. Effects of natural non-volcanic CO 2 leakage on soil microbial community composition and diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160754. [PMID: 36513229 DOI: 10.1016/j.scitotenv.2022.160754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Geological carbon capture and storage (CCS) can reduce anthropogenic CO2 emissions, but questions exist about impacts at the surface if CO2 leaks from deep storage reservoirs. To examine potential impacts on soils, previous studies have investigated the geochemistry and microbiology of volcanic soils hosting high fluxes of CO2 rich gas. This study builds on those previous investigations by considering impacts of CO2 leakage at a non-volcanic site, where deep geogenic CO2 leaks from a cracked well casing. At the site, we collected 26 soil cores adjacent to soil gas monitoring wells. Based on measured CO2 fluxes, the soil samples fall into two groups 1) high CO2 (flux = 304.6 ± 272.1 g m-2 d-1, conc. = 29.1 ± 34 %) and 2) low CO2 (flux = 15.8 ± 6.1 g m-2 d-1, conc. = 0.8 ± 0.9 %). Soil pH was significantly lower (p < 0.05) in high flux group samples (4.6 ± 0.3) than the low flux ones (5.3 ± 0.7). Beta diversity calculations using 16S rRNA gene sequences and redundancy analysis (RDA) revealed clear clustering of microbial communities relative to CO2 flux and significant correlations of community composition with pH and organic carbon content. In the high flux soils, abundant microbial groups included Acidobacteriota, Ktedonobacteria, and SC-I-84 in the phylum Proteobacteria, as well as Nitrososphaeria, a genus of ammonia oxidizing archaea. Compared to volcanic sites described previously, our non-volcanic site had slight differences in soil geochemical properties and gradual shifts in community compositions between CO2 hotspots and background locations. Moreover, the elevated abundance of SC-I-84 has not been reported in studies of volcanic sites. This study improves our ability to predict potential environmental impacts of geological CCS by expanding the range of conditions over which existing CO2 leakage has been observed.
Collapse
Affiliation(s)
- Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Chan Yeong Kim
- Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea; GeoGreen21, 55 Digital-ro 33-gil, Guro-gu, Seoul 08376, South Korea
| | - Matthew F Kirk
- Department of Geology, Kansas State University, Manhattan, KS 66506, USA
| | - Gitak Chae
- Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, South Korea.
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
6
|
Yabe S, Muto K, Abe K, Yokota A, Staudigel H, Tebo BM. Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum "Eremiobacterota", is a metabolically versatile aerobic anoxygenic phototroph. ISME COMMUNICATIONS 2022; 2:120. [PMID: 37749227 PMCID: PMC9758169 DOI: 10.1038/s43705-022-00201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 09/27/2023]
Abstract
The previously uncultured phylum "Candidatus Eremiobacterota" is globally distributed and often abundant in oligotrophic environments. Although it includes lineages with the genetic potential for photosynthesis, one of the most important metabolic pathways on Earth, the absence of pure cultures has limited further insights into its ecological and physiological traits. We report the first successful isolation of a "Ca. Eremiobacterota" strain from a fumarolic ice cave on Mt. Erebus volcano (Antarctica). Polyphasic analysis revealed that this organism is an aerobic anoxygenic photoheterotrophic bacterium with a unique lifestyle, including bacteriochlorophyll a production, CO2 fixation, a high CO2 requirement, and phototactic motility using type IV-pili, all of which are highly adapted to polar and fumarolic environments. The cells are rods or filaments with a vesicular type intracytoplasmic membrane system. The genome encodes novel anoxygenic Type II photochemical reaction centers and bacteriochlorophyll synthesis proteins, forming a deeply branched monophyletic clade distinct from known phototrophs. The first cultured strain of the eighth phototrophic bacterial phylum which we name Vulcanimicrobium alpinus gen. nov., sp. nov. advances our understanding of ecology and evolution of photosynthesis.
Collapse
Affiliation(s)
- Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan.
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Sendai, Miyagi, 989-1311, Japan.
| | - Kiyoaki Muto
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hubert Staudigel
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Marín C, Rubio J, Godoy R. Chilean blind spots in soil biodiversity and ecosystem function research. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC) Universidad Santo Tomás Av. Ramón Picarte 1130 5090000 Valdivia Chile
| | - Javiera Rubio
- Escuela de Geografía, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
8
|
Estimating biodiversity across the tree of life on Mount Everest’s southern flank with environmental DNA. iScience 2022; 25:104848. [PMID: 36148432 PMCID: PMC9486557 DOI: 10.1016/j.isci.2022.104848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Species composition in high-alpine ecosystems is a useful indicator for monitoring climatic and environmental changes at the upper limits of habitable environments. We used environmental DNA (eDNA) analysis to document the breadth of high-alpine biodiversity present on Earth’s highest mountain, Mt. Everest (8,849 m a.s.l.) in Nepal’s Khumbu region. In April-May 2019, we collected eDNA from ten ponds and streams between 4,500 m and 5,500 m. Using multiple sequencing and bioinformatic approaches, we identified taxa from 36 phyla and 187 potential orders across the Tree of Life in Mt. Everest’s high-alpine and aeolian ecosystem. These organisms, all recorded above 4,500 m—an elevational belt comprising <3% of Earth’s land surface—represents ∼16% of global taxonomic order estimates. Our eDNA inventory will aid future high-Himalayan biomonitoring and retrospective molecular studies to assess changes over time as climate-driven warming, glacial melt, and anthropogenic influences reshape this rapidly transforming world-renowned ecosystem. First comprehensive eDNA biodiversity survey conducted on Earth’s highest mountain One-sixth (16%) of global orders detected are >4,500m on the south flank of Everest Identified 187 unique orders from 36 phyla across the six kingdoms Metabarcoding and WGS approaches provide distinct yet complementary information
Collapse
|
9
|
Anderson VM, Wendt KL, Caughron JB, Matlock HP, Rangu N, Najar FZ, Miller AN, Luttenton MR, Cichewicz RH. Assessing Microbial Metabolic and Biological Diversity to Inform Natural Product Library Assembly. JOURNAL OF NATURAL PRODUCTS 2022; 85:1079-1088. [PMID: 35416663 DOI: 10.1021/acs.jnatprod.1c01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pressing need for novel chemical matter to support bioactive compound discovery has led natural product researchers to explore a wide range of source organisms and environments. One of the implicit guiding principles behind those efforts is the notion that sampling different environments is critical to accessing unique natural products. This idea was tested by comparing fungi from disparate biomes: aquatic sediments from Lake Michigan (USA) and terrestrial samples taken from the surrounding soils. Matched sets of Penicillium brevicompactum, Penicillium expansum, and Penicillium oxalicum from the two source environments were compared, revealing modest differences in physiological performance and chemical output. Analysis of LC-MS/MS-derived molecular feature data showed no source-dependent differences in chemical richness. High levels of scaffold homogeneity were also observed with 78-83% of scaffolds shared among the terrestrial and aquatic Penicillium spp. isolates. A comparison of the culturable fungi from the two biomes indicated that certain genera were more strongly associated with aquatic sediments (e.g., Trichoderma, Pseudeurotium, Cladosporium, and Preussia) versus the surrounding terrestrial environment (e.g., Fusarium, Pseudogymnoascus, Humicola, and Acremonium). Taken together, these results suggest that focusing efforts on sampling the microbial resources that are unique to an environment may have a more pronounced effect on enhancing the sought-after natural product diversity needed for chemical discovery and screening collections.
Collapse
Affiliation(s)
- Victoria M Anderson
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - James B Caughron
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Hagan P Matlock
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nitin Rangu
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Fares Z Najar
- Chemistry and Biochemistry Bioinformatics Core, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois 61820, United States
| | - Mark R Luttenton
- R. B. Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan 49441, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Steppan SJ, Bowen T, Bangs MR, Farson M, Storz JF, Quiroga-Carmona M, D’Elía G, Vimercati L, Dorador Ortiz C, Zimmerman G, Schmidt SK. Evidence of a population of leaf-eared mice Phyllotis vaccarum above 6,000 m in the Andes and a survey of high-elevation mammals. J Mammal 2022; 103:776-785. [PMID: 36118797 PMCID: PMC9469927 DOI: 10.1093/jmammal/gyac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/10/2022] [Indexed: 01/01/2023] Open
Abstract
Biologists have long pondered the extreme limits of life on Earth, including the maximum elevation at which species can live and reproduce. Here we review evidence of a self-sustaining population of mice at an elevation that exceeds that of all previously reported for mammals. Five expeditions over 10 years to Volcán Llullaillaco on the Argentina/Chile border observed and collected mice at elevations ranging from 5,070 m at the mountain's base to the summit at 6,739 m (22,110 feet). Previously unreported evidence includes observations and photographs of live animals and mummified remains, environmental DNA, and a soil microbial community reflecting animal activity that are evaluated in combination with previously reported video recordings and capture of live mice. All of the evidence identifies the mouse as the leaf-eared mouse Phyllotis vaccarum, and it robustly places the population within a haplotype group containing individuals from the Chilean Atacama Desert and nearby regions of Argentina. A critical review of the literature affirms that this population is not only an elevational record for mammals but for all terrestrial vertebrates to date, and we further find that many extreme elevations previously reported for mammals are based on scant or dubious evidence.
Collapse
Affiliation(s)
| | | | - Max R Bangs
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Matthew Farson
- Emergency Services, Modoc Medical Center, Alturas, California 96101, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Marcial Quiroga-Carmona
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile and Colección de Mamíferos de la Universidad de Austral de Chile, Valdivia 5090000, Chile
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile and Colección de Mamíferos de la Universidad de Austral de Chile, Valdivia 5090000, Chile
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Cristina Dorador Ortiz
- Departamento de Biotecnología and Center for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | | | - Steve K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
11
|
Price A, Macey MC, Pearson VK, Schwenzer SP, Ramkissoon NK, Olsson-Francis K. Oligotrophic Growth of Nitrate-Dependent Fe 2+-Oxidising Microorganisms Under Simulated Early Martian Conditions. Front Microbiol 2022; 13:800219. [PMID: 35418959 PMCID: PMC8997339 DOI: 10.3389/fmicb.2022.800219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nitrate-dependent Fe2+ oxidation (NDFO) is a microbially mediated process observed in many anaerobic, low-nutrient (oligotrophic) neutral-alkaline environments on Earth, which describes oxidation of Fe2+ to Fe3+ in tandem with microbial nitrate reduction. Evidence suggests that similar environments existed on Mars during the Noachian epoch (4.1-3.7 Ga) and in periodic, localised environments more recently, indicating that NDFO metabolism could have played a role in a potential early martian biosphere. In this paper, three NDFO microorganisms, Acidovorax sp. strain BoFeN1, Pseudogulbenkiania sp. strain 2002 and Paracoccus sp. strain KS1, were assessed for their ability to grow oligotrophically in simulated martian brines and in a minimal medium with olivine as a solid Fe2+ source. These simulant-derived media were developed from modelled fluids based on the geochemistry of Mars sample locations at Rocknest (contemporary Mars soil), Paso Robles (sulphur-rich soil), Haematite Slope (haematite-rich soil) and a Shergottite meteorite (common basalt). The Shergottite medium was able to support growth of all three organisms, while the contemporary Mars medium supported growth of Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002; however, growth was not accompanied by significant Fe2+ oxidation. Each of the strains was also able to grow in oligotrophic minimal media with olivine as the sole Fe2+ source. Biomineralised cells of Pseudogulbenkiania sp. strain 2002 were identified on the surface of the olivine, representing a potential biosignature for NDFO microorganisms in martian samples. The results suggest that NDFO microorganisms could have thrived in early martian groundwaters under oligotrophic conditions, depending on the local lithology. This can guide missions in identifying palaeoenvironments of interest for biosignature detection. Indeed, biomineralised cells identified on the olivine surface provide a previously unexplored mechanism for the preservation of morphological biosignatures in the martian geological record.
Collapse
Affiliation(s)
- Alex Price
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Michael C. Macey
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- School of Physical Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Nisha K. Ramkissoon
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering, and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
12
|
Cycil LM, Hausrath EM, Ming DW, Adcock CT, Raymond J, Remias D, Ruemmele WP. Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars. Front Microbiol 2021; 12:733244. [PMID: 34867849 PMCID: PMC8633435 DOI: 10.3389/fmicb.2021.733244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62-70 μmol m-2 s-1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200-300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed.
Collapse
Affiliation(s)
- Leena M Cycil
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Elisabeth M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Christopher T Adcock
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - James Raymond
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | | |
Collapse
|
13
|
Osborne P, Hall LJ, Kronfeld-Schor N, Thybert D, Haerty W. A rather dry subject; investigating the study of arid-associated microbial communities. ENVIRONMENTAL MICROBIOME 2020; 15:20. [PMID: 33902728 PMCID: PMC8067391 DOI: 10.1186/s40793-020-00367-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/12/2020] [Indexed: 05/08/2023]
Abstract
Almost one third of Earth's land surface is arid, with deserts alone covering more than 46 million square kilometres. Nearly 2.1 billion people inhabit deserts or drylands and these regions are also home to a great diversity of plant and animal species including many that are unique to them. Aridity is a multifaceted environmental stress combining a lack of water with limited food availability and typically extremes of temperature, impacting animal species across the planet from polar cold valleys, to Andean deserts and the Sahara. These harsh environments are also home to diverse microbial communities, demonstrating the ability of bacteria, fungi and archaea to settle and live in some of the toughest locations known. We now understand that these microbial ecosystems i.e. microbiotas, the sum total of microbial life across and within an environment, interact across both the environment, and the macroscopic organisms residing in these arid environments. Although multiple studies have explored these microbial communities in different arid environments, few studies have examined the microbiota of animals which are themselves arid-adapted. Here we aim to review the interactions between arid environments and the microbial communities which inhabit them, covering hot and cold deserts, the challenges these environments pose and some issues arising from limitations in the field. We also consider the work carried out on arid-adapted animal microbiotas, to investigate if any shared patterns or trends exist, whether between organisms or between the animals and the wider arid environment microbial communities. We determine if there are any patterns across studies potentially demonstrating a general impact of aridity on animal-associated microbiomes or benefits from aridity-adapted microbiomes for animals. In the context of increasing desertification and climate change it is important to understand the connections between the three pillars of microbiome, host genome and environment.
Collapse
Affiliation(s)
- Peter Osborne
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK.
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 85354, Freising, Germany
| | | | - David Thybert
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| |
Collapse
|
14
|
Vimercati L, Bueno de Mesquita CP, Schmidt SK. Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold-Dry Limits of Life on Earth. Microorganisms 2020; 8:E1061. [PMID: 32708721 PMCID: PMC7409055 DOI: 10.3390/microorganisms8071061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Soils on the world's highest volcanoes in the Atacama region represent some of the harshest ecosystems yet discovered on Earth. Life in these environments must cope with high UV flux, extreme diurnal freeze-thaw cycles, low atmospheric pressure and extremely low nutrient and water availability. Only a limited spectrum of bacterial and fungal lineages seems to have overcome the harshness of this environment and may have evolved the ability to function in situ. However, these communities may lay dormant for most of the time and spring to life only when enough water and nutrients become available during occasional snowfalls and aeolian depositions. We applied water and nutrients to high-elevation soils (5100 meters above sea level) from Volcán Llullaillaco, both in lab microcosms and in the field, to investigate how microbial communities respond when resource limitations are alleviated. The dominant taxon in these soils, the extremophilic yeast Naganishia sp., increased in relative sequence abundance and colony-forming unit counts after water + nutrient additions in microcosms, and marginally in the field after only 6 days. Among bacteria, only a Noviherbaspirillum sp. (Oxalobacteraceae) significantly increased in relative abundance both in the lab and field in response to water addition but not in response to water and nutrients together, indicating that it might be an oligotroph uniquely suited to this extreme environment. The community structure of both bacteria and eukaryotes changed significantly with water and water + nutrient additions in the microcosms and taxonomic richness declined with amendments to water and nutrients. These results indicate that only a fraction of the detected community is able to become active when water and nutrients limitations are alleviated in lab microcosms, and that water alone can dramatically change community structure. Our study sheds light on which extremophilic organisms are likely to respond when favorable conditions occur in extreme earthly environments and perhaps in extraterrestrial environments as well.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| | - Clifton P. Bueno de Mesquita
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| |
Collapse
|
15
|
Malavasi V, Soru S, Cao G. Extremophile Microalgae: the potential for biotechnological application. JOURNAL OF PHYCOLOGY 2020; 56:559-573. [PMID: 31917871 DOI: 10.1111/jpy.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Microalgae are photosynthetic microorganisms that use sunlight as an energy source, and convert water, carbon dioxide, and inorganic salts into algal biomass. The isolation and selection of microalgae, which allow one to obtain large amounts of biomass and valuable compounds, is a prerequisite for their successful industrial production. This work provides an overview of extremophile algae, where their ability to grow under harsh conditions and the corresponding accumulation of metabolites are addressed. Emphasis is placed on the high-value products of some prominent algae. Moreover, the most recent applications of these microorganisms and their potential exploitation in the context of astrobiology are taken into account.
Collapse
Affiliation(s)
- Veronica Malavasi
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| |
Collapse
|
16
|
Aszalós JM, Szabó A, Megyes M, Anda D, Nagy B, Borsodi AK. Bacterial Diversity of a High-Altitude Permafrost Thaw Pond Located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). ASTROBIOLOGY 2020; 20:754-765. [PMID: 32525738 DOI: 10.1089/ast.2018.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial ecology of permafrost, due to its ecological and astrobiological importance, has been in the focus of studies in past decades. Although permafrost is an ancient and stable environment, it is also subjected to current climate changes. Permafrost degradation often results in generation of thaw ponds, a phenomenon not only reported mainly from polar regions but also present in high-altitude permafrost environments. Our knowledge about microbial communities of thaw ponds in these unique, remote mountain habitats is sparse. This study presents the first culture collection and results of the next-generation DNA sequencing (NGS) analysis of bacterial communities inhabiting a high-altitude permafrost thaw pond. In February 2016, a permafrost thaw pond on the Ojos del Salado at 5900 m a.s.l. (meters above sea level) was sampled as part of the Hungarian Dry Andes Research Programme. A culture collection of 125 isolates was established, containing altogether 11 genera belonging to phyla Bacteroidetes, Actinobacteria, and Proteobacteria. Simplified bacterial communities with a high proportion of candidate and hitherto uncultured bacteria were revealed by Illumina MiSeq NGS. Water of the thaw pond was dominated by Bacteroidetes and Proteobacteria, while in the sediment of the lake and permafrost, members of Acidobacteria, Actinobacteria, Bacteroidetes, Patescibacteria, Proteobacteria, and Verrucomicrobia were abundant. This permafrost habitat can be interesting as a potential Mars analog.
Collapse
Affiliation(s)
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Melinda Megyes
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
- Danube Research Institute, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
17
|
Breuer H, Berényi A, Mari L, Nagy B, Szalai Z, Tordai Á, Weidinger T. Analog Site Experiment in the High Andes-Atacama Region: Surface Energy Budget Components on Ojos del Salado from Field Measurements and WRF Simulations. ASTROBIOLOGY 2020; 20:684-700. [PMID: 32048870 DOI: 10.1089/ast.2019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions is rare on Mars. Earth-based analogs could help gain an understanding of soil and atmospheric processes on Mars and refine existing models. In this work, we evaluate the applicability of the Weather Research and Forecasting (WRF) model against measurements from the Mars analog High Andes-Atacama Desert. Validation focuses on the surface conditions and on the surface energy budget. Measurements show that the average daily net radiation, global radiation, and latent heat flux amount to 131, 273, and about 10 W/m2, respectively, indicating extremely dry atmospheric conditions. Dynamically, the effect of topography is also well simulated. One of the main modeling problems is the inaccurate initial soil and surface conditions in the area. Correction of soil moisture based on in situ and satellite soil moisture measurements, as well as the removal of snow coverage, reduced the surface skin temperature root mean square error from 9.8°C to 4.3°C. The model, however, has shortcomings when soil condition modeling is considered. Sensible heat flux estimations are on par with the measurements (daily maxima around 500 W/m2), but surface soil heat flux is greatly overestimated (by 150-500 W/m2). Soil temperature and soil moisture diurnal variations are inconsistent with the measurements, partially due to the lack of water vapor representation in soil calculations.
Collapse
Affiliation(s)
- Hajnalka Breuer
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Berényi
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - László Mari
- Department of Physical Geography, Eötvös Loránd University, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szalai
- Department of Environmental and Landscape Geography, Eötvös Loránd University, Budapest, Hungary
- Geographical Research Institute, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágoston Tordai
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
18
|
Aszalós JM, Szabó A, Felföldi T, Jurecska L, Nagy B, Borsodi AK. Effects of Active Volcanism on Bacterial Communities in the Highest-Altitude Crater Lake of Ojos del Salado (Dry Andes, Altiplano-Atacama Region). ASTROBIOLOGY 2020; 20:741-753. [PMID: 32525737 DOI: 10.1089/ast.2018.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Periglacial and volcanic environments are considered terrestrial analogs of Mars with regard to astrobiological characteristics due to their specific set of extreme features. Ojos del Salado, the highest volcano on Earth (6893 m a.s.l.), is surrounded by several craters, one of which harbors the highest known altitude lake (6480 m a.s.l.), which is influenced by a rare combination of extreme environmental factors, that is, low mean temperature, permafrost, fumarolic activity, acidity, and extreme low organic matter content. To assess the genetic diversity and ecological tolerance of bacteria, samples were taken in February 2016 from the sediments covered with acidic cold (pH 4.88, 3.8°C) and warm (pH 2.08, 40.8°C) water. As a control, a nonvolcanic high-altitude lake (at 5900 m a.s.l.) was also studied by both cultivation-based and next-generation DNA sequencing methods. Isolates from the crater lake showed tolerance toward acidic pH values, unlike isolates from the nonvolcanic lake. Illumina MiSeq sequencing of the 16S rRNA gene exposed simplified, although characteristically different, bacterial communities in the warm and cold water-saturated sediments. In the fumarolic creek sediments, acidophilic iron oxidizers (Ferrithrix, Gallionella) and iron reducers (Acidiphilium) were abundant, and bacteria involved in the sulfur oxidation (Hydrogenobaculum, Thiomonas) and reduction (Desulfosporosinus) were also detected. Therefore, we propose an integrated model that addresses the potential role of bacteria in the sulfur and iron geomicrobiological cycles.
Collapse
Affiliation(s)
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Laura Jurecska
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Nagy
- Department of Physical Geography, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Bull AT, Goodfellow M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns. MICROBIOLOGY-SGM 2020; 165:1252-1264. [PMID: 31184575 DOI: 10.1099/mic.0.000822] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
Collapse
Affiliation(s)
- Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
20
|
Fazi S, Ungaro F, Venturi S, Vimercati L, Cruz Viggi C, Baronti S, Ugolini F, Calzolari C, Tassi F, Vaselli O, Raschi A, Aulenta F. Microbiomes in Soils Exposed to Naturally High Concentrations of CO 2 (Bossoleto Mofette Tuscany, Italy). Front Microbiol 2019; 10:2238. [PMID: 31681186 PMCID: PMC6797827 DOI: 10.3389/fmicb.2019.02238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Direct and indirect effects of extremely high geogenic CO2 levels, commonly occurring in volcanic and hydrothermal environments, on biogeochemical processes in soil are poorly understood. This study investigated a sinkhole in Italy where long-term emissions of thermometamorphic-derived CO2 are associated with accumulation of carbon in the topsoil and removal of inorganic carbon in low pH environments at the bottom of the sinkhole. The comparison between interstitial soil gasses and those collected in an adjacent bubbling pool and the analysis of the carbon isotopic composition of CO2 and CH4 clearly indicated the occurrence of CH4 oxidation and negligible methanogenesis in soils at the bottom of the sinkhole. Extremely high CO2 concentrations resulted in higher microbial abundance (up to 4 × 109 cell g-1 DW) and a lower microbial diversity by favoring bacteria already reported to be involved in acetogenesis in mofette soils (i.e., Firmicutes, Chloroflexi, and Acidobacteria). Laboratory incubations to test the acetogenic and methanogenic potential clearly showed that all the mofette soil supplied with hydrogen gas displayed a remarkable CO2 fixation potential, primarily due to the activity of acetogenic microorganisms. By contrast, negligible production of acetate occurred in control tests incubated with the same soils, under identical conditions, without the addition of hydrogen. In this study, we report how changes in diversity and functions of the soil microbial community - induced by high CO2 concentration - create peculiar biogeochemical profile. CO2 emission affects carbon cycling through: (i) inhibition of the decomposition of the organic carbon and (ii) promotion of CO2-fixation via the acetyl-CoA pathway. Sites naturally exposed to extremely high CO2 levels could potentially represent an untapped source of microorganisms with unique capabilities to catalytically convert CO2 into valuable organic chemicals and fuels.
Collapse
Affiliation(s)
- Stefano Fazi
- Water Research Institute, National Research Council (IRSA-CNR), Rome, Italy
| | - Fabrizio Ungaro
- Institute of BioEconomy - National Research Council (IBE-CNR), Florence, Italy
| | - Stefania Venturi
- Institute of Geosciences and Earth Resources, National Research Council (IGG-CNR), Florence, Italy.,Department of Earth Sciences, University of Florence, Florence, Italy
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | | | - Silvia Baronti
- Institute of BioEconomy - National Research Council (IBE-CNR), Florence, Italy
| | - Francesca Ugolini
- Institute of BioEconomy - National Research Council (IBE-CNR), Florence, Italy
| | - Costanza Calzolari
- Institute of BioEconomy - National Research Council (IBE-CNR), Florence, Italy
| | - Franco Tassi
- Institute of Geosciences and Earth Resources, National Research Council (IGG-CNR), Florence, Italy.,Department of Earth Sciences, University of Florence, Florence, Italy
| | - Orlando Vaselli
- Institute of Geosciences and Earth Resources, National Research Council (IGG-CNR), Florence, Italy.,Department of Earth Sciences, University of Florence, Florence, Italy
| | - Antonio Raschi
- Institute of BioEconomy - National Research Council (IBE-CNR), Florence, Italy
| | - Federico Aulenta
- Water Research Institute, National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
21
|
The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Sci Rep 2019; 9:10676. [PMID: 31337772 PMCID: PMC6650471 DOI: 10.1038/s41598-019-46521-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/18/2019] [Indexed: 11/08/2022] Open
Abstract
Microbial communities have not been studied using molecular approaches at high elevations on the African continent. Here we describe the diversity of microbial communities from ice and periglacial soils from near the summit of Mt. Kilimanjaro by using both Illumina and Sanger sequencing of 16S and 18S rRNA genes. Ice and periglacial soils contain unexpectedly diverse and rich assemblages of Bacteria and Eukarya indicating that there may be high rates of dispersal to the top of this tropical mountain and/or that the habitat is more conducive to microbial life than was previously thought. Most bacterial OTUs are cosmopolitan and an analysis of isolation by geographic distance patterns of the genus Polaromonas emphasized the importance of global Aeolian transport in the assembly of bacterial communities on Kilimanjaro. The eukaryotic communities were less diverse than the bacterial communities and showed more evidence of dispersal limitations and apparent endemism. Cercozoa dominated the 18S communities, including a high abundance of testate amoebae and a high diversity of endemic OTUs within the Vampyrellida. These results argue for more intense study of this unique high-elevation "island of the cryosphere" before the glaciers of Kilimanjaro disappear forever.
Collapse
|
22
|
Adamczyk M, Hagedorn F, Wipf S, Donhauser J, Vittoz P, Rixen C, Frossard A, Theurillat JP, Frey B. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Front Microbiol 2019; 10:1080. [PMID: 31156590 PMCID: PMC6529532 DOI: 10.3389/fmicb.2019.01080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
While vegetation has intensively been surveyed on mountain summits, limited knowledge exists about the diversity and community structure of soil biota. Here, we study how climatic variables, vegetation, parent material, soil properties, and slope aspect affect the soil microbiome on 10 GLORIA (Global Observation Research Initiative in Alpine environments) mountain summits ranging from the lower alpine to the nival zone in Switzerland. At these summits we sampled soils from all four aspects and examined how the bacterial and fungal communities vary by using Illumina MiSeq sequencing. We found that mountain summit soils contain highly diverse microbial communities with a total of 10,406 bacterial and 6,291 fungal taxa. Bacterial α-diversity increased with increasing soil pH and decreased with increasing elevation, whereas fungal α-diversity did not change significantly. Soil pH was the strongest predictor for microbial β-diversity. Bacterial and fungal community structures exhibited a significant positive relationship with plant communities, indicating that summits with a more distinct plant composition also revealed more distinct microbial communities. The influence of elevation was stronger than aspect on the soil microbiome. Several microbial taxa responded to elevation and soil pH. Chloroflexi and Mucoromycota were significantly more abundant on summits at higher elevations, whereas the relative abundance of Basidiomycota and Agaricomycetes decreased with elevation. Most bacterial OTUs belonging to the phylum Acidobacteria were indicators for siliceous parent material and several OTUs belonging to the phylum Planctomycetes were associated with calcareous soils. The trends for fungi were less clear. Indicator OTUs belonging to the genera Mortierella and Naganishia showed a mixed response to parent material, demonstrating their ubiquitous and opportunistic behaviour in soils. Overall, fungal communities responded weakly to abiotic and biotic factors. In contrast, bacterial communities were strongly influenced by environmental changes suggesting they will be strongly affected by future climate change and associated temperature increase and an upward migration of vegetation. Our results provide the first insights into the soil microbiome of mountain summits in the European Alps that are shaped as a result of highly variable local environmental conditions and may help to predict responses of the soil biota to global climate change.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sonja Wipf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Jonathan Donhauser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christian Rixen
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jean-Paul Theurillat
- Fondation J.-M. Aubert, Champex-Lac, Switzerland
- Department of Botany and Plant Biology, University of Geneva, Chambésy, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
23
|
Pulschen AA, de Araujo GG, de Carvalho ACSR, Cerini MF, Fonseca LDM, Galante D, Rodrigues F. Survival of Extremophilic Yeasts in the Stratospheric Environment during Balloon Flights and in Laboratory Simulations. Appl Environ Microbiol 2018; 84:e01942-18. [PMID: 30266724 PMCID: PMC6238051 DOI: 10.1128/aem.01942-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The high-altitude atmosphere is a harsh environment with extremely low temperatures, low pressure, and high UV irradiation. For this reason, it has been proposed as an analogue for Mars, presenting deleterious factors similar to those on the surface of that planet. We evaluated the survival of extremophilic UV-resistant yeasts isolated from a high-elevation area in the Atacama Desert under stratospheric conditions. As biological controls, intrinsically resistant Bacillus subtilis spores were used. Experiments were performed in two independent stratospheric balloon flights and with an environmental simulation chamber. The three following different conditions were evaluated: (i) desiccation, (ii) desiccation plus exposure to stratospheric low pressure and temperature, and (3) desiccation plus exposure to the full stratospheric environment (UV, low pressure, and temperature). Two strains, Naganishia (Cryptococcus) friedmannii 16LV2 and Exophiala sp. strain 15LV1, survived full exposures to the stratosphere in larger numbers than did B. subtilis spores. Holtermanniella watticus (also known as Holtermanniella wattica) 16LV1, however, suffered a substantial loss in viability upon desiccation and did not survive the stratospheric UV exposure. The remarkable resilience of N. friedmannii and Exophiala sp. 15LV1 under the extreme Mars-like conditions of the stratosphere confirms its potential as a eukaryotic model for astrobiology. Additionally, our results with N. friedmannii strengthen the recent hypothesis that yeasts belonging to the Naganishia genus are fit for aerial dispersion, which might account for the observed abundance of this species in high-elevation soils.IMPORTANCE Studies of eukaryotic microorganisms under conditions of astrobiological relevance, as well as the aerial dispersion potential of extremophilic yeasts, are still lacking in the literature compared to works with bacteria. Using stratospheric balloon flights and a simulation chamber, we demonstrate that yeasts isolated from an extreme environment are capable of surviving all stressors found in the stratosphere, including intense UV irradiation, scoring an even higher survival than B. subtilis spores. Notably, the yeast N. friedmannii, which displayed one of the highest tolerances to the stratospheric environment in the experiments, was recently proposed to be adapted to airborne transportation, although such a hypothesis had not yet been tested. Our results strengthen such an assumption and can help explain the observed distribution and ecology of this particular yeast species.
Collapse
Affiliation(s)
| | | | | | - Maria Fernanda Cerini
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | | | - Douglas Galante
- Graduate Program in Biomolecular Physics, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Fabio Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|