1
|
Dhahbi S, Lee J, Ryu D, Akinniyi G, Yang I. Actinomycetes studies in Tunisia. Res Microbiol 2025:104279. [PMID: 39827931 DOI: 10.1016/j.resmic.2025.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Tunisia, located in North Africa, has a diverse topography along the Mediterranean Sea to the Sahara Desert. These environments encompass oases, rhizosphere soils, desert deposits, saline wetlands, offshore oilrigs, and ancient monument rocks. The country's varied environments have led to the isolation of a multitude of actinomycetes. A phylogenetic analysis based on the 16S rRNA sequences of one hundred isolated actinomycetes strains revealed that the majority belong to the genus Streptomyces. Secondary metabolite studies from these actinomycetes yielded 33 natural products. Notably, compound 12, 3-O-methylviridicatin, exhibited antitumor activity and suppressed HIV expression. This showcases Tunisia's potential for natural product research.
Collapse
Affiliation(s)
- Souleima Dhahbi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Jeonghee Lee
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Dohee Ryu
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
2
|
Saygin H, Guven K, Cetin D, Sahin N. Polyphasic characterization and genomic insights into Nocardioides turkmenicus sp. nov. isolated from a desert soil. Antonie Van Leeuwenhoek 2024; 117:25. [PMID: 38261138 DOI: 10.1007/s10482-023-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Strain KC13T, a novel desert-adapted, non-motile, Gram-stain-positive, rod-shaped, aerobic bacterium, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan and characterised by a polyphasic approach. Phylogenetic analysis based on 16S rRNA sequences revealed that strain KC13T was a member of the genus Nocardioides, and formed a distinct cluster with Nocardioides luteus DSM 43366T (99.3% sequence identity), Nocardioides albus DSM 43109T (98.9%), Nocardioides panzhihuensis DSM 26487T (98.3%) and Nocardioides albertanoniae DSM 25218T (97.9%). The orthologous average nucleotide identity and digital DNA-DNA hybridization values were in the range of 85.8-91.0% and 30.2-35.9%, respectively, with the type strains of closely related species. The genome size of strain KC13T was 5.3 Mb with a DNA G + C content of 69.7%. Comprehensive genome analyses showed that strain KC13T, unlike its close relatives, had many genes associated with environmental adaptation. Strain KC13T was found to have chemotaxonomic and phenotypic characteristics of members of the genus Nocardioides and some differences from phylogenetic neighbours. Based on the chemotaxonomic, genomic, phenotypic and phylogenetic data, strain KC13T represents a novel species of the genus Nocardioides, for which the name Nocardioides turkmenicus sp. nov. is proposed, and the type strain is KC13T (= JCM 33525T = CGMCC 4.7619T).
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Department of Biology, Faculty of Science, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
3
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Comprehensive genome analysis of a novel actinobacterium with high potential for biotechnological applications, Nonomuraea aridisoli sp. nov., isolated from desert soil. Antonie van Leeuwenhoek 2021; 114:1963-1975. [PMID: 34529164 DOI: 10.1007/s10482-021-01654-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
During a study to isolate such actinobacteria with unique metabolic potential, a novel actinobacterium, designated KC333T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. The taxonomic position of the strain was investigated using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequence showed that the strain was most closely related to Nonomuraea terrae CH32T (99.0% sequence similarity), Nonomuraea maritima FXJ7.203 T (98.9%), Nonomuraea candida HMC10T (98.7%) and Nonomuraea gerenzanensis ATCC 39727 T (98.6%), and is therefore considered to represent a member of the genus Nonomuraea. However, the average nucleotide identity and digital DNA-DNA hybridization based on whole-genome sequences between strain KC333T and close relatives demonstrated that it represents a novel species of the genus Nonomuraea. The major cellular fatty acids of strain KC333T were iso-C16: 0, C17:0 10-methyl and iso-C16: 0 2OH. Strain KC333T contained meso-diaminopimelic, mannose, madurose and ribose in the cell-wall peptidoglycan. The predominant menaquinones were MK-9(H4) and MK-9(H6). The genome size of strain KC333T is approximately 9.86 Mb, and the genomic DNA G + C content of the strain is 71.3%. In addition to the polyphasic characterisation, comprehensive genome analysis for gene clusters encoding carbohydrate-active enzymes and bioactive secondary metabolites as well as CRISPR-associated sequences revealed the high biotechnological potential of the strain. Based on evidence collected from the genotypic, phenotypic, and phylogenetic analyses, a novel species, Nonomuraea aridisoli sp. nov. is proposed with KC333T (= DSM 107062 T = JCM 32584 T = KCTC 49111 T) as the type strain.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.,Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey.
| |
Collapse
|
5
|
Saygin H. Genomic insight into the Streptomyces aurantiacus clade: reclassification of Streptomyces ederensis as a later heterotypic synonym of Streptomyces umbrinus and Streptomyces glomeroaurantiacus as a later heterotypic synonym of Streptomyces aurantiacus. Int J Syst Evol Microbiol 2021; 71. [PMID: 33999791 DOI: 10.1099/ijsem.0.004797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic relationships and genome features of the type strains in the Streptomyces aurantiacus clade, including Streptomyces aurantiacus, Streptomyces ederensis, Streptomyces glomeroaurantiacus, Streptomyces umbrinus, Streptomyces phaeochromogenes, Streptomyces dioscori and Streptomyces tauricus, were investigated. Type strains of these species shared high 16S rRNA gene sequence similarity to each other. Multilocus sequence analysis (MLSA) based on atpD, gyrB, recA, rpoB and trpB genes revealed that S. ederensis and S. umbrinus belong to the same species. Also, S. aurantiacus and S. glomeroaurantiacus belong to the same species, but the remaining species are not closely related to each other. MLSA results were verified by the results average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses; while the ANI and dDDH values between S. ederensis and S. umbrinus are 98.1 and 85.4 %, respectively, these values between S. aurantiacus and S. glomeroaurantiacus are 98.9 and 90.7 %, respectively. The presence of almost the same set of biosynthetic gene clusters and highly consistent phenotypic test results also supported the synonymy between S. ederensis and S. umbrinus, as well as between S. aurantiacus and S. glomeroaurantiacus. Therefore, S. ederensis should be reclassified as a later heterotypic synonym of S. umbrinus and S. glomeroaurantiacus should be reclassified as a later heterotypic synonym of S. aurantiacus.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, Samsun 55139, Turkey
| |
Collapse
|
6
|
Saygin H, Ay H, Guven K, Sahin N. Genome-based classification of three novel actinobacteria from the Karakum Desert: Jiangella asiatica sp. nov., Jiangella aurantiaca sp. nov. and Jiangella ureilytica sp. nov. Int J Syst Evol Microbiol 2020; 70:1993-2002. [PMID: 32228773 DOI: 10.1099/ijsem.0.004011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three isolates, 5K138T, 8K307T and KC603T, with typical morphological characteristics of members of the genus Jiangella were obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliations of the strains. The strains showed chemotaxonomic properties consistent with their classification as representing members of the genus Jiangella such as ll-diaminopimelic acid in the cell wall peptidoglycan, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as major polar lipids as well as MK-9(H4) as a major menaquinone. Pairwise sequence comparisons of the 16S rRNA genes showed that the strains were closely related to Jiangella alba DSM 45237T, Jiangella rhizosphaerae NEAU-YY265T and Jiangella mangrovi 3SM4-07T with higher than 99 % sequence identities. However, a combination of phenotypic and phylogenetic approaches as well as genome-based comparative analyses confirmed the taxonomic positions of these strains as representing distinct species within the genus Jiangella. Therefore, strains 5K138T, 8K307T and KC603T should each be classified as representing a novel species within the genus Jiangella, for which the names Jiangella asiatica sp. nov., Jiangella aurantiaca sp. nov. and Jiangella ureilytica sp. nov. are proposed, respectively. The type strains of the proposed novel species are as follows: Jiangella asiatica 5K138T (=JCM 33518T=CGMCC 4.7672T), Jiangella aurantiaca 8K307T (=JCM 33519T=CGMCC 4.7621T) and Jiangella ureilytica KC603T (=JCM 33520T=CGMCC 4.7618T).
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
7
|
Ay H, Saygin H, Sahin N. Phylogenomic revision of the family Streptosporangiaceae, reclassification of Desertactinospora gelatinilytica as Spongiactinospora gelatinilytica comb. nov. and a taxonomic home for the genus Sinosporangium in the family Streptosporangiaceae. Int J Syst Evol Microbiol 2020; 70:2569-2579. [PMID: 32129735 DOI: 10.1099/ijsem.0.004073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the results of genome-based phylogenetic analyses have contributed to microbial systematics by increasing the availability of sequenced microbial genomes. Therefore, phylogenomic analysis within large taxa in the phylum Actinobacteria has appeared as a useful tool to clarify the taxonomic positions of ambiguous groups. In this study, we provide a revision of the actinobacterial family Streptosporangiaceae using a large collection of genome data and phylogenomics approaches. The phylogenomic analyses included the publicly available genome data of the members of the family Streptosporangiaceae and the state-of-the-art tools are used to infer the taxonomic affiliation of these species within the family. By comparing genome-based and 16S rRNA gene-based trees, as well as pairwise genome comparisons, the recently described genera Spongiactinospora and Desertactinospora are combined in the genus Spongiactinospora. In conclusion, a comprehensive phylogenomic revision of the family Streptosporangiaceae is proposed.
Collapse
Affiliation(s)
- Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| |
Collapse
|
8
|
Saygin H, Nouioui I, Ay H, Guven K, Cetin D, Klenk HP, Goodfellow M, Sahin N. Polyphasic classification of Nonomuraea strains isolated from the Karakum Desert and description of Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov. Int J Syst Evol Microbiol 2020; 70:636-647. [PMID: 31693475 DOI: 10.1099/ijsem.0.003808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Five actinobacteria isolates, KC201T, KC401, KC310T, KC712T and 6K102T, were recovered from the Karakum Desert during an investigation of novel actinobacteria with biotechnological potential. A polyphasic approach confirmed the affiliation of the strains to the genus Nonomuraea. The strains showed chemotaxonomic and morphological properties consistent with their classification in the genus Nonomuraea. Furthermore, these strains clearly distinguished and formed well supperted clades in phylogenetic and phylogenomic trees. Low ANI and dDDH values and distinguishing phenotypic properties between isolates KC201T, KC310T, KC712T and 6K102T showed that these strains belonged to novel Nonomuraea species, the names proposed for these taxa are Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov., with the type strains KC310T (=CGMCC 4.7331T =DSM 102919T =KCTC 39774T), KC712T (=CGMCC 4.7334T =DSM 102925T =KCTC 39776), KC201T (=CGMCC 4.7339T =DSM 102917T =KCTC 39781T) and 6K102T (=CGMCC 4.7541T =JCM 32916), respectively.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555, Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi University, 06500, Ankara, Turkey
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
9
|
Saygin H, Ay H, Guven K, Cetin D, Sahin N. Micromonospora deserti sp. nov., isolated from the Karakum Desert. Int J Syst Evol Microbiol 2019; 70:282-291. [PMID: 31596193 DOI: 10.1099/ijsem.0.003752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An isolate, 13K206T, with typical morphological characteristics of the genus Micromonospora was obtained during a study searching for novel actinobacteria with biosynthetic potential from the Karakum Desert. A polyphasic approach was adopted to determine taxonomic affiliation of the strain. The strain showed chemotaxonomical properties consistent with its classification in the genus Micromonospora such as meso- and 3-OH-A2pm in the cell-wall peptidoglycan, xylose in whole-cell hydrolysate and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain was closely related to 'Micromonospora spongicola' S3-1T, Micromonospora nigra DSM 43818T and Micromonospora yasonensis DS3186T with sequence similarities of 98.6, 98.5 and 98.4 %, respectively. Digital DNA-DNA hybridization and average nucleotide identity analyses in addition to gyrB gene analysis confirmed the assignment of the strain to a novel species within the genus Micromonospora for which the name Micromonospora deserti sp. nov. is proposed. The type strain is 13K206T (=JCM 32583T=DSM 107532T). The DNA G+C content of the type strain is 72.4 mol%.
Collapse
Affiliation(s)
- Hayrettin Saygin
- Department of Biology, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Kiymet Guven
- Department of Biology, Faculty of Science, Eskisehir Technical University, 26555 Eskisehir, Turkey
| | - Demet Cetin
- Division of Science Education, Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500 Ankara, Turkey
| | - Nevzat Sahin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Ondokuz Mayis University, 55139 Samsun, Turkey
| |
Collapse
|
10
|
Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2019; 128:630-657. [PMID: 31310419 DOI: 10.1111/jam.14386] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
The prevalence of multidrug-resistant microbial pathogens due to the continued misuse and overuse of antibiotics in agriculture and medicine is raising the prospect of a return to the preantibiotic days of medicine at the time of diminishing numbers of drug leads. The good news is that an increased understanding of the nature and extent of microbial diversity in natural habitats coupled with the application of new technologies in microbiology and chemistry is opening up new strategies in the search for new specialized products with therapeutic properties. This review explores the premise that harsh environmental conditions in extreme biomes, notably in deserts, permafrost soils and deep-sea sediments select for micro-organisms, especially actinobacteria, cyanobacteria and fungi, with the potential to synthesize new druggable molecules. There is evidence over the past decade that micro-organisms adapted to life in extreme habitats are a rich source of new specialized metabolites. Extreme habitats by their very nature tend to be fragile hence there is a need to conserve those known to be hot-spots of novel gifted micro-organisms needed to drive drug discovery campaigns and innovative biotechnology. This review also provides an overview of microbial-derived molecules and their biological activities focusing on the period from 2010 until 2018, over this time 186 novel structures were isolated from 129 representatives of microbial taxa recovered from extreme habitats.
Collapse
Affiliation(s)
- A M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - M H A Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.,Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
11
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:1247-1250. [PMID: 31066659 DOI: 10.1099/ijsem.0.003357] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|