1
|
diCenzo GC, Yang Y, Young JPW, Kuzmanović N. Refining the taxonomy of the order Hyphomicrobiales ( Rhizobiales) based on whole genome comparisons of over 130 type strains. Int J Syst Evol Microbiol 2024; 74. [PMID: 38619983 DOI: 10.1099/ijsem.0.006328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The alphaproteobacterial order Hyphomicrobiales consists of 38 families comprising at least 152 validly published genera as of January 2024. The order Hyphomicrobiales was first described in 1957 and underwent important revisions in 2020. However, we show that several inconsistencies in the taxonomy of this order remain and we argue that there is a need for a consistent framework for defining families within the order. We propose a common genome-based framework for defining families within the order Hyphomicrobiales, suggesting that families represent monophyletic groups in core-genome phylogenies that share pairwise average amino acid identity values above ~75 % when calculated from a core set of 59 proteins. Applying this framework, we propose the formation of four new families and to reassign the genera Salaquimonas, Rhodoblastus, and Rhodoligotrophos into Salaquimonadaceae fam. nov., Rhodoblastaceae fam. nov., and Rhodoligotrophaceae fam. nov., respectively, and the genera Albibacter, Chenggangzhangella, Hansschlegelia, and Methylopila into Methylopilaceae fam. nov. We further propose to unify the families Bartonellaceae, Brucellaceae, Phyllobacteriaceae, and Notoacmeibacteraceae as Bartonellaceae; the families Segnochrobactraceae and Pseudoxanthobacteraceae as Segnochrobactraceae; the families Lichenihabitantaceae and Lichenibacteriaceae as Lichenihabitantaceae; and the families Breoghaniaceae and Stappiaceae as Stappiaceae. Lastly, we propose to reassign several genera to existing families. Specifically, we propose to reassign the genus Pseudohoeflea to the family Rhizobiaceae; the genera Oricola, Roseitalea, and Oceaniradius to the family Ahrensiaceae; the genus Limoniibacter to the emended family Bartonellaceae; the genus Faunimonas to the family Afifellaceae; and the genus Pseudochelatococcus to the family Chelatococcaceae. Our data also support the recent proposal to reassign the genus Prosthecomicrobium to the family Kaistiaceae.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, Queen's University, Kingston, ON, K7P 0S7, Canada
| | - Yuqi Yang
- Department of Biology, Queen's University, Kingston, ON, K7P 0S7, Canada
| | - J Peter W Young
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Nemanja Kuzmanović
- Institute for Plant Protection in Horticulture and Urban Green, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, 38104, Germany
| |
Collapse
|
2
|
Bertazzoli G, Nerva L, Chitarra W, Fracchetti F, Campedelli I, Moffa L, Sandrini M, Nardi T. A polyphasic molecular approach to characterize a collection of grapevine endophytic bacteria with bioprotective potential. J Appl Microbiol 2024; 135:lxae050. [PMID: 38419289 DOI: 10.1093/jambio/lxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
AIMS The work presented here was conducted to characterize the biodiversity of a collection of bacterial isolates, mainly wood endophytes, as part of a research project focused on exploring their bioprotective potential for postharvest biological control of fruits. METHODS AND RESULTS This work was the basis for the development of a tailored method combining 16S rDNA sequencing and Rep-PCR to differentiate the isolates and identify them to genus level or below. More than one hundred isolates obtained from wood and roots of different grapevine genotypes were cultured on appropriate growth media and then subjected to the specified multistep molecular identification. CONCLUSIONS We have obtained good dereplication for grapevine-endophytic bacteria, together with reliable genetic identification. Both are essential prerequisites to properly characterize a biome bank and, at the same time, beneficial prerequisites to subsequently perform a correct bioprotection assessment.
Collapse
Affiliation(s)
- Giulia Bertazzoli
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- Microbion Srl, San Giovanni Lupatoto (VR) 37057, Italy
| | - Luca Nerva
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- CNR, Institute for Sustainable Plant Protection, Torino 10135, Italy
| | - Walter Chitarra
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
- CNR, Institute for Sustainable Plant Protection, Torino 10135, Italy
| | | | | | - Loredana Moffa
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| | - Marco Sandrini
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| | - Tiziana Nardi
- CREA - Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano (TV) 31015, Italy
| |
Collapse
|
3
|
Oren A, Göker M. Validation List no. 212. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37526968 DOI: 10.1099/ijsem.0.005931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Oren A, Göker M. Notification of changes in taxonomic opinion previously published outside the IJSEM. List of Changes in Taxonomic Opinion no. 38. Int J Syst Evol Microbiol 2023; 73. [PMID: 37526965 DOI: 10.1099/ijsem.0.005923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
5
|
Agafonova NV, Belova AA, Kaparullina EN, Tarlachkov SV, Kopitsyn DS, Machulin AV, Doronina NV. Ancylobacter radicis sp. nov., a novel aerobic methylotrophic bacteria associated with plants. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01850-z. [PMID: 37270429 DOI: 10.1007/s10482-023-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
The two novel bacterial strains, designated as VTT and ML, were isolated from roots of cinquefoil (Potentilla sp.) and leaves of meadow-grass (Poa sp.) on the flooded bank of lake, respectively. These isolates were Gram-negative, non-spore-forming, non-motile, rod-shaped cells, utilized methanol, methylamine, and polycarbon compounds as carbon and energy sources. In the whole-cell fatty acid pattern of strains prevailed C18:1ω7c and C19:0cyc. Based on the phylogenetic analysis of 16S rRNA gene sequences, strains VTT and ML were closely related to the representatives of the genus Ancylobacter (98.3-98.5%). The assembled genome of strain VTT has a total length of 4.22 Mbp, and a G + C content is 67.3%. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain VTT and closely related type strains of genus Ancylobacter were 78.0-80.6%, 73.8-78.3% and 22.1-24.0%, respectively, that clearly lower than proposed thresholds for species. On the basis of the phylogenetic, phenotypic, and chemotaxonomic analysis, isolates VTT and ML represent a novel species of the genus Ancylobacter, for which the name Ancylobacter radicis sp. nov. is proposed. The type strain is VTT (= VKM B-3255T = CCUG 72400T). In addition, novel strains were able to dissolve insoluble phosphates, to produce siderophores and plant hormones (auxin biosynthesis). According to genome analysis genes involved in the biosynthesis of siderophores, polyhydroxybutyrate, exopolysaccharides and phosphorus metabolism, as well as the genes involved in the assimilation of C1-compounds (natural products of plant metabolism) were found in the genome of type strain VTT.
Collapse
Affiliation(s)
- Nadezhda V Agafonova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia.
| | - Alina A Belova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia
| | - Elena N Kaparullina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia
| | - Sergey V Tarlachkov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia
| | | | - Andrey V Machulin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia
| | - Nina V Doronina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki, 5, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|