1
|
Li Z, Melograna F, Hoskens H, Duroux D, Marazita ML, Walsh S, Weinberg SM, Shriver MD, Müller-Myhsok B, Claes P, Van Steen K. netMUG: a novel network-guided multi-view clustering workflow for dissecting genetic and facial heterogeneity. Front Genet 2023; 14:1286800. [PMID: 38125750 PMCID: PMC10731261 DOI: 10.3389/fgene.2023.1286800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.
Collapse
Affiliation(s)
- Zuqi Li
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Federico Melograna
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Hoskens
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Diane Duroux
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, United States
| | | | - Peter Claes
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
- BIO3 - Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Dall’Olio L, Bolognesi M, Borghesi S, Cattoretti G, Castellani G. BRAQUE: Bayesian Reduction for Amplified Quantization in UMAP Embedding. ENTROPY (BASEL, SWITZERLAND) 2023; 25:354. [PMID: 36832720 PMCID: PMC9955093 DOI: 10.3390/e25020354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/09/2023]
Abstract
Single-cell biology has revolutionized the way we understand biological processes. In this paper, we provide a more tailored approach to clustering and analyzing spatial single-cell data coming from immunofluorescence imaging techniques. We propose Bayesian Reduction for Amplified Quantization in UMAP Embedding (BRAQUE) as an integrative novel approach, from data preprocessing to phenotype classification. BRAQUE starts with an innovative preprocessing, named Lognormal Shrinkage, which is able to enhance input fragmentation by fitting a lognormal mixture model and shrink each component towards its median, in order to help further the clustering step in finding more separated and clear clusters. Then, BRAQUE's pipeline consists of a dimensionality reduction step performed using UMAP, and a clustering performed using HDBSCAN on UMAP embedding. In the end, clusters are assigned to a cell type by experts, using effects size measures to rank markers and identify characterizing markers (Tier 1), and possibly characterize markers (Tier 2). The number of total cell types in one lymph node detectable with these technologies is unknown and difficult to predict or estimate. Therefore, with BRAQUE, we achieved a higher granularity than other similar algorithms such as PhenoGraph, following the idea that merging similar clusters is easier than splitting unclear ones into clear subclusters.
Collapse
Affiliation(s)
- Lorenzo Dall’Olio
- Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy
| | - Maddalena Bolognesi
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy
| | - Simone Borghesi
- Department of Mathematics and Applications, University of Milano Bicocca, 20126 Milan, Italy
| | - Giorgio Cattoretti
- Department of Medicine and Surgery, University of Milano Bicocca, 20900 Monza, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
3
|
Kumar P, Agrawal R, Kumar D. Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Wang Y, Krishna Saraswat S, Elyasi Komari I. Big Data Analysis Using a Parallel Ensemble Clustering Architecture and an Unsupervised Feature Selection Approach. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2022. [DOI: 10.1016/j.jksuci.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
Pei J. Construction of a Legal System of Corporate Social Responsibility Based on Big Data Analysis Technology. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8448095. [PMID: 36246459 PMCID: PMC9568343 DOI: 10.1155/2022/8448095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
The company is an essential organization in modern society, and the company has transformed from a purely economic organization to a corporate citizen that realizes economic responsibility and practices social responsibility at the same time. It is only by constructing a legal system of corporate social responsibility that companies can take social responsibility on the track of the legal system, realize the company's mission of the times, and achieve a win-win situation for both the company and society. This paper used the LDA and text clustering methods to analyze existing legal texts. It obtained the theme and text clustering results, thus proposing five aspects of the legal system construction framework to guide the corporate social responsibility legal system, which has pioneering significance.
Collapse
Affiliation(s)
- Jiuzheng Pei
- North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| |
Collapse
|