1
|
Hu E, Meng Y, Ma Y, Song R, Hu Z, Li M, Hao Y, Fan X, Wei L, Fan S, Chen S, Zhai X, Li Y, Zhang W, Zhang Y, Guo Q, Bayin C. De novo assembly and analysis of the transcriptome of the Dermacentor marginatus genes differentially expressed after blood-feeding and long-term starvation. Parasit Vectors 2020; 13:563. [PMID: 33172483 PMCID: PMC7654163 DOI: 10.1186/s13071-020-04442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The ixodid tick Dermacentor marginatus is a vector of many pathogens wide spread in Eurasia. Studies of gene sequence on many tick species have greatly increased the information on tick protective antigen which might have the potential to function as effective vaccine candidates or drug targets for eco-friendly acaricide development. In the current study, RNA-seq was applied to identify D. marginatus sequences and analyze differentially expressed unigenes. Methods To obtain a broader picture of gene sequences and changes in expression level, RNA-seq was performed to obtain the whole-body transcriptome data of D. marginatus adult female ticks after engorgement and long-term starvation. Subsequently, the real-time quantitative PCR (RT-qPCR) was applied to validate the RNA-seq data. Results RNA-seq produced 30,251 unigenes, of which 32% were annotated. Gene expression was compared among groups that differed by status as newly molted, starved and engorged female adult ticks. Nearly one third of the unigenes in each group were differentially expressed compared to the other two groups, and the most numerous were genes encoding proteins involved in catalytic and binding activities and apoptosis. Selected up-regulated differentially expressed genes in each group were associated to protein, lipids, carbohydrate and chitin metabolism. Blood-feeding and long-term starvation also caused genes differentially expressed in the defense response and antioxidant response. RT-qPCR results indicated 6 differentially expressed transcripts showed similar trends in expression changes with RNA-seq results confirming that the gene expression profiles in transcriptome data is in consistent with RT-qPCR validation. Conclusions Obtaining the sequence information of D. marginatus and characterizing the expression pattern of the genes involved in blood-feeding and during starvation would be helpful in understanding molecular physiology of D. marginatus and provides data for anti-tick vaccine and drug development for controlling the tick.![]()
Collapse
Affiliation(s)
- Ercha Hu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Ying Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, 841000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yunwei Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Liting Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shilong Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Songqin Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yongchang Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Chahan Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020; 10:574405. [PMID: 33042874 PMCID: PMC7517725 DOI: 10.3389/fcimb.2020.574405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Species have definitive genomes. Even so, the transcriptional and translational products of the genome are dynamic and subject to change over time. This is especially true for the proteins secreted by ticks at the tick-host feeding interface that represent a complex system known as the sialoverse. The sialoverse represent all of the proteins derived from tick salivary glands for all tick species that may be involved in tick-host interaction and the modulation of the host's defense mechanisms. The current study contemplates the advances made over time to understand and describe the complexity present in the sialoverse. Technological advances at given periods in time allowed detection of functions, genes, and proteins enabling a deeper insight into the complexity of the sialoverse and a concomitant expansion in complexity with as yet, no end in sight. The importance of systematic classification of the sialoverse is highlighted with the realization that our coverage of transcriptome and proteome space remains incomplete, but that complete descriptions may be possible in the future. Even so, analysis and integration of the sialoverse into a comprehensive understanding of tick-host interactions may require further technological advances given the high level of expected complexity that remains to be uncovered.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|