Iost Filho FH, Heldens WB, Kong Z, de Lange ES. Drones: Innovative Technology for Use in Precision Pest Management.
JOURNAL OF ECONOMIC ENTOMOLOGY 2020;
113:1-25. [PMID:
31811713 DOI:
10.1093/jee/toz268]
[Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 06/10/2023]
Abstract
Arthropod pest outbreaks are unpredictable and not uniformly distributed within fields. Early outbreak detection and treatment application are inherent to effective pest management, allowing management decisions to be implemented before pests are well-established and crop losses accrue. Pest monitoring is time-consuming and may be hampered by lack of reliable or cost-effective sampling techniques. Thus, we argue that an important research challenge associated with enhanced sustainability of pest management in modern agriculture is developing and promoting improved crop monitoring procedures. Biotic stress, such as herbivory by arthropod pests, elicits physiological defense responses in plants, leading to changes in leaf reflectance. Advanced imaging technologies can detect such changes, and can, therefore, be used as noninvasive crop monitoring methods. Furthermore, novel methods of treatment precision application are required. Both sensing and actuation technologies can be mounted on equipment moving through fields (e.g., irrigation equipment), on (un)manned driving vehicles, and on small drones. In this review, we focus specifically on use of small unmanned aerial robots, or small drones, in agricultural systems. Acquired and processed canopy reflectance data obtained with sensing drones could potentially be transmitted as a digital map to guide a second type of drone, actuation drones, to deliver solutions to the identified pest hotspots, such as precision releases of natural enemies and/or precision-sprays of pesticides. We emphasize how sustainable pest management in 21st-century agriculture will depend heavily on novel technologies, and how this trend will lead to a growing need for multi-disciplinary research collaborations between agronomists, ecologists, software programmers, and engineers.
Collapse