1
|
Erdem E, Koç-İnak N, Rüstemoğlu M, İnak E. Geographical distribution of pyrethroid resistance mutations in Varroa destructor across Türkiye and a European overview. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:309-321. [PMID: 38401013 PMCID: PMC11035437 DOI: 10.1007/s10493-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.
Collapse
Affiliation(s)
- Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Turkey
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Ankara, Turkey.
| |
Collapse
|
2
|
Millán-Leiva A, Marín Ó, Christmon K, vanEngelsdorp D, González-Cabrera J. Mutations associated with pyrethroid resistance in Varroa mite, a parasite of honey bees, are widespread across the United States. PEST MANAGEMENT SCIENCE 2021; 77:3241-3249. [PMID: 33728766 DOI: 10.1002/ps.6366] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Managed honey bees are key pollinators of many crops and play an essential role in the United States food production. For more than ten years, beekeepers in the United States have been reporting high rates of colony losses. One of the drivers of these losses is the parasitic mite Varroa destructor. Maintaining healthy honey bee colonies in the United States is dependent on a successful control of this mite. The pyrethroid tau-fluvalinate (Apistan®) was among the first synthetic varroacides registered in the United States. With over 20 years of use, mites resistant to Apistan® have emerged, and so it is unsurprising that treatment failures have been reported. Resistance to tau-fluvalinate in US mite populations is associated with point mutations at position 925 of the voltage-gated sodium channel. RESULTS Here, we have generated a distribution map of pyrethroid resistance alleles in Varroa samples collected from US apiaries in 2016 and 2017, using a high throughput allelic discrimination assay based on TaqMan®. Our results evidence that knockdown resistance (kdr)-type mutations are widely distributed in Varroa populations across the country showing high variability among apiaries. We used these data to predict the phenotype of the mites in the case of treatments with pyrethroids. CONCLUSION We highlight the relevance of monitoring the resistance in mite populations to achieve an efficient control of this pest. We also put forward the benefits of implementing this methodology to provide data for designing pest management programs aiming to control Varroa. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anabel Millán-Leiva
- Department of Genetics, Institute BIOTECMED, Universitat de València, Burjassot, Spain
| | - Óscar Marín
- Department of Genetics, Institute BIOTECMED, Universitat de València, Burjassot, Spain
| | | | | | - Joel González-Cabrera
- Department of Genetics, Institute BIOTECMED, Universitat de València, Burjassot, Spain
| |
Collapse
|
3
|
Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor. Proc Natl Acad Sci U S A 2021; 118:2020380118. [PMID: 33547243 DOI: 10.1073/pnas.2020380118] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4 RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.
Collapse
|
4
|
Koç N, İnak E, Jonckheere W, Van Leeuwen T. Genetic analysis and screening of pyrethroid resistance mutations in Varroa destructor populations from Turkey. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:433-444. [PMID: 33983538 DOI: 10.1007/s10493-021-00626-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Varroa destructor is the most common ectoparasite of the Western honey bee (Apis mellifera L.) worldwide and poses a serious threat to bee health. Synthetic acaricides, particularly pyrethroids, are frequently used to control Varroa mites. However, long-term and repeated use of synthetic pyrethroids has led to the development of resistance. In this study, we report on the presence of resistance mutations in the voltage-gated sodium channel in V. destructor populations from Turkish beekeeping areas. Two resistance mutations, L925V and L925I, that were previously associated with pyrethroid resistance, were found in more than 75% of the populations. A general correlation between the presence of mutations and the history of acaricide usage was observed for the sampled hives. In addition, we show there is only a low genetic distance among the sampled V. destructor populations, based on the analysis of three mitochondrial genes: cytochrome b (cytb), ATP synthase subunit 6 (atp6), and cytochrome c oxidase subunit III (cox3). Revealing the presence and geographical distribution of pyrethroid resistance mutations in V. destructor populations from Turkish apiaries will contribute to create more effective mite management programmes.
Collapse
Affiliation(s)
- Nafiye Koç
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Diskapi, 06110, Ankara, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110, Ankara, Turkey
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Muntaabski I, Russo RM, Liendo MC, Palacio MA, Cladera JL, Lanzavecchia SB, Scannapieco AC. Genetic variation and heteroplasmy of Varroa destructor inferred from ND4 mtDNA sequences. Parasitol Res 2020; 119:411-421. [PMID: 31915912 DOI: 10.1007/s00436-019-06591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 02/01/2023]
Abstract
Varroa destructor, a parasitic mite of the western honey bee, Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. Population genetics studies of the mite have provided information on two mitochondrial haplotypes infecting honey bee colonies, named K and J (after Korea and Japan, respectively, where they were originally identified). On the American continent, the K haplotype is much more prevalent, with the J haplotype only detected in some areas of Brazil. The aims of the present study were to assess the genetic diversity of V. destructor populations in the major beekeeping region of Argentina and to evaluate the presence of heteroplasmy at the nucleotide level. Phoretic mites were collected from managed A. mellifera colonies in ten localities, and four mitochondrial DNA (mtDNA) regions (COXI, ND4, ND4L, and ND5) were analyzed. Based on cytochrome oxidase subunit I (COXI) sequencing, exclusively the K haplotype of V. destructor was detected. Furthermore, two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in ND4 sequences and the frequency of these sub-haplotypes was found to significantly correlate with geographical latitude. The occurrence of site heteroplasmy was also evident for this gene. Therefore, ND4 appears to be a sensitive marker for detecting genetic variability in mite populations. Site heteroplasmy emerges as a phenomenon that could be relatively frequent in V. destructor.
Collapse
Affiliation(s)
- Irina Muntaabski
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina M Russo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - María C Liendo
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Palacio
- Unidad Integrada INTA - Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - Jorge L Cladera
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Silvia B Lanzavecchia
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Alejandra C Scannapieco
- Instituto de Genética "E. A. Favret", Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO) - CONICET, Hurlingham, Buenos Aires, Argentina. .,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Gajić B, Muñoz I, De la Rúa P, Stevanović J, Lakić N, Kulišić Z, Stanimirović Z. Coexistence of genetically different Varroa destructor in Apis mellifera colonies. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:315-326. [PMID: 31197529 DOI: 10.1007/s10493-019-00395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the genetic diversity of Varroa destructor parasitizing Apis mellifera colonies and to test for possible host-parasite association at the mitochondrial DNA (mtDNA) level. Six A. mellifera haplotypes (including a novel C2aa) and five haplotypes of V. destructor were detected in 29 analyzed colonies from eight sampling sites in Serbia. We revealed the presence of the K and S1 haplotypes as well as KS1 and KP1 heteroplasmic mite individuals in all localities, while the P1 haplotype was only found in four sampling sites. Significant differences in V. destructor genetic diversity were found at both apiary and colony levels, with mite haplotypes coexisting in almost all tested colonies. In addition, a significant correlation between the number of analyzed mites per colony and the number of identified V. destructor haplotypes was observed. However, no significant host-parasite relationship was found, suggesting that mites bearing different haplotypes as well as those heteroplasmic individuals are well adapted to the host, A. mellifera, independently of the identified haplotype present in each colony. Our results will contribute to future population and biogeographic studies concerning V. destructor infesting A. mellifera, as well as to better understanding their host-parasite relationship.
Collapse
Affiliation(s)
- Bojan Gajić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia.
| | - Irene Muñoz
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Lakić
- Department of Statistics, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Zoran Kulišić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|