1
|
Karakaya İ, Arslanhan BA, Önder Z. Detection of mutations in the voltage-gated sodium channel gene of Varroa destructor (Acari: Varroidae) populations. Vet Parasitol Reg Stud Reports 2024; 56:101121. [PMID: 39550181 DOI: 10.1016/j.vprsr.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
The honeybee (Apis mellifera) ectoparasite, Varroa destructor, is one of the most important honeybee pests worldwide. Acaricides, including the pyrethroids (tau-fluvalinate, flumethrin), and organophosphate (coumaphos) have been applied to control this mite within apiaries, still the long-term, constant, and excessive use of these products has led to the development of resistance in many populations. Three different mutations (L925V, L925I, L925M) at position 925 and one mutation (M918L) at 918 position of the V. destructor voltage-gated sodium channel (VGSC) have been associated with the resistance to these compounds. In the present study, we examined the presence of resistance mutations in the VGSC gene, encoding the target of pyrethroids, in the V. destructor population collected from the Kayseri and Sivas provinces of Central Anatolia Region of Türkiye. A total of 200 V. destructor samples were collected from 20 apiaries in two provinces throughout 2023. To investigate the mutations in Varroa samples, the domain II region of the VGSC gene was amplified using PCR and sequenced. The nucleotide sequencing of the IIS4-IIS5 linker region of the VGSC gene revealed one amino acid change at position 925: a leucine to isoleucine substitution (L925I). No mutations at other positions were identified. Homozygous resistant alleles were detected in 20 (40 %) of the sequenced 50 samples in the study areas. However, we detected the homozygous sensitive allele (wild-type allele, L925) in the remaining samples (50/30, 60 %). The result shows that this status may indicate a problem for Varroa control in the future. Thus, alternative acaricide with a mode of action of different pyrethroids should be considered in the control of V. destructor populations in these provinces.
Collapse
Affiliation(s)
- İsmail Karakaya
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Batuhan Aşkım Arslanhan
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Zuhal Önder
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye.
| |
Collapse
|
2
|
İnak E, De Rouck S, Koç-İnak N, Erdem E, Rüstemoğlu M, Dermauw W, Van Leeuwen T. Identification and CRISPR-Cas9 validation of a novel β-adrenergic-like octopamine receptor mutation associated with amitraz resistance in Varroa destructor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106080. [PMID: 39277393 DOI: 10.1016/j.pestbp.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024]
Abstract
Varroa destructor is widely recognized as a significant contributor to colony collapse disorder. Chemical acaricides, such as amitraz, have been extensively used for Varroa control due to their selectivity within beehives. However, the increasing number of cases of amitraz resistance across global V. destructor populations poses a significant challenge. In this study, we conducted a comprehensive molecular screening of the β-adrenergic-like octopamine receptor (Octβ2R), the target-site of amitraz, across 66 Turkish and 63 Belgian V. destructor populations. Although previously reported amitraz resistance mutations were not detected, the screening revealed a novel Y337F mutation located within transmembrane 7 (TM7) of Octβ2R in Turkish Varroa populations. Notably, this mutation was identified in the last residue of the highly conserved NPxxY motif associated with the activation of G-protein coupled receptors (GPCR). Among the 66 Varroa samples from Türkiye, twenty harbored the Y337F mutation, with eight samples exhibiting fixation of the mutation. Subsequent bioassays revealed over 8-fold resistance to amitraz in populations that contain the Y337F mutation. Genotyping of mites after exposure to 10 mg a.i./l amitraz demonstrated that all surviving mites were homozygous for the Y337F mutation, whereas dead mites carried susceptible alleles, providing genetic linkage between mutation and phenotype. Further, we used CRISPR-Cas9 editing to introduce the Y337F mutation in the orthologous Octβ2R of the model organism Tetranychus urticae. Crispants exhibited over threefold resistance to amitraz. In conclusion, this study identified and validated a novel amitraz resistance mutation. Additional research is required to further evaluate the phenotypic strength of Y337F in the context of operational resistance with current treatment strategies.
Collapse
Affiliation(s)
- Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110, Ankara, Türkiye.
| | - Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Türkiye.
| | - Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şırnak, Türkiye.
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şırnak, Türkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Pan D, Luo QJ, O Reilly AO, Yuan GR, Wang JJ, Dou W. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. INSECT SCIENCE 2024; 31:803-816. [PMID: 37650774 DOI: 10.1111/1744-7917.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Andrias O O Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Yarsan E, Yilmaz F, Sevin S, Akdeniz G, Celebi B, Ozturk SH, Ayikol SN, Karatas U, Ese H, Fidan N, Agacdiken B, Babur C, Buldag M, Pehlivan S. Investigation of resistance against to flumethrin using against Varroa destructor in Türkiye. Vet Res Commun 2024; 48:1683-1696. [PMID: 38509424 PMCID: PMC11147911 DOI: 10.1007/s11259-024-10351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The honeybee ectoparasite Varroa destructor is a major threat to apiculture when evaluating bee diseases and pests. While attempting to control this mite, beekeepers often depend on a small selection of authorized synthetic acaricides, such as flumethrin, which is widely used in Türkiye and globally. However, resistance to flumethrin develops due to incorrect and excessive use. In this study conducted at Ordu Beekeeping Research Institute, trial group were established including an untreated control group and group where flumethrin-based pesticides were applied. Dead varroas collected from pollen traps and live varroas collected from bees were obtained from these trial groups for molecular analysis as positive-negative controls. Varroa samples were collected from provinces representing different regions with intensive beekeeping activities such as Adana, Ankara, Bingöl, Muğla, Ordu, Şanlıurfa, Tekirdağ. Molecular methods were employed to investigate the resistance gene region for pyrethroids (specifically flumethrin) against V. destructor. In our study, individual DNA extractions were performed on dead parasites from colonies subjected to pyrethroid application (resistance negative control) and live parasites (resistance positive control). The DNA samples obtained were used in PCR reactions targeting the region encoding the 925th amino acid of the voltage-gated sodium channel (VGSC) gene, which is responsible for resistance formation. The DNA samples were subjected to gel electrophoresis to observe the amplification products of the expected target region. To examine the nucleotide sequence changes that encode leucine at the 925th amino acid, which is associated with resistance, DNA sequence analysis was applied to the amplification products. Out of 332 V. destructor parasites obtained from different provinces, 279 were analysed using molecular methods. It was observed that 31% of the samples showed sensitivity to flumethrin while 69% exhibited resistance to it. Among the resistant samples: 27% had homozygous isoleucine mutation; 28% had homozygous valine mutation; 2.8% had heterozygous isoleucine mutation; 8.5% had heterozygous valine mutation; and 2.8% had heterozygous methionine mutation, all of which were associated with flumethrin resistance. As a result, the rate of flumethrin resistance in parasites varied between 51% and 94% among different provinces.
Collapse
Affiliation(s)
- Ender Yarsan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06100, Türkiye
| | | | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06100, Türkiye.
| | - Gökhan Akdeniz
- Apiculture Research Center, Aegean Agricultural Research Institute, İzmir, Türkiye
| | - Bekir Celebi
- Microbiology Reference Laboratory Department, General Directorate of Public Health, Ministry of Health, Ankara, Türkiye
| | | | - Sultan Nurhan Ayikol
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06100, Türkiye
| | | | - Hasan Ese
- Apiculture Research Institute, Ordu, Türkiye
| | - Nuri Fidan
- Food Control Laboratory Directorate, Giresun, Türkiye
| | - Bayram Agacdiken
- Ordu-Kabadüz District Directorate of Agriculture and Forestry, Ordu, Türkiye
| | - Cahit Babur
- Microbiology Reference Laboratory Department, General Directorate of Public Health, Ministry of Health, Ankara, Türkiye
| | | | - Sinem Pehlivan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Medipol University, Ankara, Türkiye
| |
Collapse
|
5
|
Narciso L, Topini M, Ferraiuolo S, Ianiro G, Marianelli C. Effects of natural treatments on the varroa mite infestation levels and overall health of honey bee (Apis mellifera) colonies. PLoS One 2024; 19:e0302846. [PMID: 38713668 DOI: 10.1371/journal.pone.0302846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
The survival of the honey bee (Apis mellifera), which has a crucial role in pollination and ecosystem maintenance, is threatened by many pathogens, including parasites, bacteria, fungi and viruses. The ectoparasite Varroa destructor is considered the major cause of the worldwide decline in honey bee colony health. Although several synthetic acaricides are available to control Varroa infestations, resistant mites and side effects on bees have been documented. The development of natural alternatives for mite control is therefore encouraged. The study aims at exploring the effects of cinnamon and oregano essential oils (EOs) and of a mixed fruit cocktail juice on mite infestation levels and bee colony health. A multi-method study including hive inspection, mite count, molecular detection of fungal, bacterial and viral pathogens, analysis of defensin-1, hymenoptaecin and vitellogenin immune gene expression, colony density and honey production data, was conducted in a 20-hive experimental apiary. The colonies were divided into five groups: four treatment groups and one control group. The treatment groups were fed on a sugar syrup supplemented with cinnamon EO, oregano EO, a 1:1 mixture of both EOs, or a juice cocktail. An unsupplemented syrup was, instead, used to feed the control group. While V. destructor affected all the colonies throughout the study, no differences in mite infestation levels, population density and honey yield were observed between treatment and control groups. An overexpression of vitellogenin was instead found in all EO-treated groups, even though a significant difference was only found in the group treated with the 1:1 EO mixture. Viral (DWV, CBPV and BQCV), fungal (Nosema ceranae) and bacterial (Melissococcus plutonius) pathogens from both symptomatic and asymptomatic colonies were detected.
Collapse
Affiliation(s)
- Laura Narciso
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Topini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Sapienza University of Rome, Rome, Italy
| | - Sonia Ferraiuolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Sapienza University of Rome, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Marianelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Erdem E, Koç-İnak N, Rüstemoğlu M, İnak E. Geographical distribution of pyrethroid resistance mutations in Varroa destructor across Türkiye and a European overview. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:309-321. [PMID: 38401013 PMCID: PMC11035437 DOI: 10.1007/s10493-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.
Collapse
Affiliation(s)
- Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Turkey
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Ankara, Turkey.
| |
Collapse
|
7
|
Lee J, Moon K, Cho S, Lim Y, Kim S, Kim SB, Han SM, Kim YH, Lee SH. Establishment and application of bioassay- and molecular marker-based methods for monitoring fluvalinate resistance of Varroa mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105655. [PMID: 38072530 DOI: 10.1016/j.pestbp.2023.105655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The Varroa mite, Varroa destructor, is an ectoparasite that infests honey bees. The extensive use of acaricides, including fluvalinate, has led to the emergence of resistance in Varroa mite populations worldwide. This study's objective is to monitor fluvalinate resistance in field populations of Varroa mites in Korea through both bioassay-based and molecular marker-based methods. To achieve this, a residual contact vial (RCV) bioassay was established for on-site resistance monitoring. A diagnostic dose of 200 ppm was determined based on the bioassay using a putative susceptible population. In the RCV bioassay, early mortality evaluation was effective for accurately discriminating mites with the knockdown resistance (kdr) genotype, while late evaluation was useful for distinguishing mites with additional resistance factors. The RCV bioassay of 14 field mite populations collected in 2021 indicated potential resistance development in four populations. As an alternative approach, quantitative sequencing was employed to assess the frequency of the L925I/M mutation in the voltage-gated sodium channel (VGSC), associated with fluvalinate kdr trait. While the mutation was absent in 2020 Varroa mite populations, it emerged in 2021, increased in frequency in 2022, and became nearly widespread across the country by 2023. This recent emergence and rapid spread of fluvalinate resistance within a span of three years demonstrate the Varroa mite's significant potential for developing resistance. This situation further underscores the urgent need to replace fluvalinate with alternative acaricides. A few novel VGSC mutations potentially involved in resistance were identified. Potential factors driving the rapid expansion of resistance were further discussed.
Collapse
Affiliation(s)
- Joonhee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - KyungHwan Moon
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea
| | - SuSie Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngcheon Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Bae Kim
- Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju, Republic of Korea
| | - Sang-Mi Han
- Apiculture Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju, Republic of Korea.
| | - Young Ho Kim
- Department of Vector Entomology, Kyungpook National University, Sangju, Republic of Korea; Research Institute of Invertebrate Vector, Kyungpook National University, Sangju, Republic of Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Reyes-Quintana M, Goodwin PH, Correa-Benítez A, Pelaez-Hernández R, Guzman-Novoa E. Genetic variability of the honey bee mite, Varroa destructor, from a humid continental climatic region of Canada, and temperate and tropical climatic regions of Mexico. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:541-559. [PMID: 37884811 DOI: 10.1007/s10493-023-00848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Varroa destructor is a damaging mite of Western honey bees (Apis mellifera). Genetic variability of the mite in different regions of the world could be related to the movement of infested bees or other factors, such as climate. In this study, V. destructor samples were collected from tropical and temperate climate regions of Mexico, and a humid continental climate region of Canada. COX-1 AFLPs showed that all the mites were the Korean haplotype. Four microsatellites revealed nine haplogroups from the continental climate region of Canada, compared to three haplogroups from the tropical and temperate climate regions of Mexico. CytII-ATP sequences showed seven haplogroups from the humid continental climate region vs. two haplogroups from the temperate region and one haplogroup from the tropical region. CytB sequences revealed seven haplogroups from Canada vs. three from Mexico. A comparison of the cytB sequences of the samples from Canada and Mexico to those from a worldwide collection showed that one sequence, designated the cytB1 type, predominated, comprising 57% of the 86 sequences; it clustered with similar sequences that comprised 80% of the sequences, designated family A. CytB1 was predominant in Mexico, but not in Canada. The other 20% of sequences were in families B and C, and all those samples originated from East and Southeast Asia. The microsatellite, cytII-ATP, and cytB markers, all showed higher variability in mites collected in Canada than in Mexico, which could be related to the cooler climate or an earlier invasion and/or multiple mite invasions in Canada.
Collapse
Affiliation(s)
- Mariana Reyes-Quintana
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Adriana Correa-Benítez
- Departamento de Medicina y Zootecnia en Abejas, FMVZ, UNAM, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Roberto Pelaez-Hernández
- Departamento de Medicina y Zootecnia en Abejas, FMVZ, UNAM, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
9
|
Almecija G, Schimmerling M, Del Cont A, Poirot B, Duquesne V. Varroa destructor resistance to tau-fluvalinate: relationship between in vitro phenotypic test and VGSC L925V mutation. PEST MANAGEMENT SCIENCE 2022; 78:5097-5105. [PMID: 36103265 PMCID: PMC9826128 DOI: 10.1002/ps.7126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Varroa destructor is a parasitic mite of the honey bee, Apis mellifera. Its presence in colonies can lead to a collapse within a few years. The use of acaricides has become essential to manage the hive infestation. However, the repeated and possibly incorrect use of acaricide treatments, as tau-fluvalinate, has led to the development of resistance. The in vitro phenotypic test allows the proportion of susceptible or resistant individuals to be known following an exposure to an active substance. In Varroa mites, resistance to tau-fluvalinate is associated with the presence of mutations at the position 925 of the voltage-gated sodium channel (VGSC). RESULTS Here, we compared the results obtained with an in vitro phenotypic test against tau-fluvalinate and those obtained with an allelic discrimination assay on 13 treated and untreated Varroa populations in France. The correlation between the phenotype and the genetic profile rate is found to be 0.89 Varroa mites having resistant phenotypic profile have a probability of 63% to present the L925V mutation (resistance detection reliability). However, 97% of the Varroa mites having the susceptible phenotype do not present the L925V mutation (susceptible detection reliability). CONCLUSION The L925V mutation explains most of the resistance to tau-fluvalinate in V. destructor in the populations tested. However, other mutations or types of resistance may also be involved to explain the survival of Varroa mites in the phenotypic test. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Marion Schimmerling
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Sophia Antipolis Laboratory, Bee Pathology UnitSophia AntipolisFrance
| | - Aurélie Del Cont
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Sophia Antipolis Laboratory, Bee Pathology UnitSophia AntipolisFrance
| | - Benjamin Poirot
- Apinov, Scientific Beekeeping and Training CentreLagordFrance
| | - Véronique Duquesne
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Sophia Antipolis Laboratory, Bee Pathology UnitSophia AntipolisFrance
| |
Collapse
|
10
|
Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Vlogiannitis S, Jonckheere W, Laget D, de Graaf DC, Vontas J, Van Leeuwen T. Pyrethroid target-site resistance mutations in populations of the honey bee parasite Varroa destructor (Acari: Varroidae) from Flanders, Belgium. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:205-221. [PMID: 34676469 DOI: 10.1007/s10493-021-00665-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The honey bee ectoparasite Varroa destructor is considered the major threat to apiculture, as untreated colonies of Apis mellifera usually collapse within a few years. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate and flumethrin. Due to the intensive use of these products, resistance is now commonplace in many beekeeping regions across the world. In the present study, the occurrence of amino acid substitutions at residue L925 of the voltage-gate sodium channel-the pyrethroid target site-was studied in Varroa populations collected throughout Flanders, Belgium. Dose-response bioassays supported the involvement of the frequently observed L925V substitution in flumethrin resistance, resulting in a 12.64-fold increase of the LC50 in a Varroa population mostly consisting of homozygous 925 V/V mites. With the presence of L925 substitutions in about four out of 10 screened apiaries, the use of pyrethroid-based varroacides in Flanders, including the recently released PolyVar® Yellow, should be carefully considered.
Collapse
Affiliation(s)
- Spyridon Vlogiannitis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Dries Laget
- Laboratory of Molecular Entomology and Bee Pathology, Faculty of Sciences, Ghent University, Krijgslaan 281, S2, 9000, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Faculty of Sciences, Ghent University, Krijgslaan 281, S2, 9000, Ghent, Belgium
| | - John Vontas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, 100 N. Plastira Street, 700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|