1
|
Le Mauff A, Norris EJ, Li AY, Swale DR. Repellent activity of essential oils to the Lone Star tick, Amblyomma americanum. Parasit Vectors 2024; 17:202. [PMID: 38711138 DOI: 10.1186/s13071-024-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 μg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 μg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 μg/cm2 but was not significantly different at 10 μg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.
Collapse
Affiliation(s)
- Anais Le Mauff
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Anholeto LA, Blanchard S, Wang HV, Chagas ACDS, Hillier NK, Faraone N. In vitro acaricidal activity of essential oils and their binary mixtures against ixodes scapularis (Acari: Ixodidae). Ticks Tick Borne Dis 2024; 15:102309. [PMID: 38219289 DOI: 10.1016/j.ttbdis.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Ixodes scapularis ticks are vectors of infectious agents that cause illness in humans, including Lyme disease. Recent years have seen a surge in tick-borne diseases (TBD) resulting in a high demand for tick management products. Plants offer a valuable source of active compounds for the development of novel, eco-friendly tick control products, reducing potential risks to human and animal health. Essential oils (EOs) have emerged as potential acaricides and repellents against ticks providing an alternative to synthetic chemicals and aiding in the prevention of TBD by lowering the risk of tick bites. We investigated the acaricidal activity of EOs from lemongrass (Cymbopogon citratus), geranium (Pelargonium x asperum), savory thyme (Thymus saturejoides), and white thyme (Thymus zygis) on I. scapularis. The interactions (i.e., synergistic, antagonistic, or additive) of their binary mixtures were also evaluated. EO samples were analyzed via gas chromatography-mass spectrometry to determine their chemical composition. The adult immersion test was used to determine the lethal concentration (LC50) of each EO alone and in mixtures. Quantitative assessment of synergistic, additive, or antagonistic effect of the binary mixtures was performed by calculating the combination index. Strong acaricidal activity was recorded for savory thyme and white thyme EOs, with LC50 values of 28.0 and 11.0 μg/μL, respectively. The LC50 of lemongrass and geranium EOs were 49.0 and 39.7 μg/μL, respectively. Among the tested EOs, savory thyme and white thyme had a strong acaricidal effect on I. scapularis, which might be linked to the presence of carvacrol (26.05 % ± 0.38) and thymol (53.6 % ± 2.31), main components present in savory thyme and white thyme EOs, respectively. The tick killing efficacy of lemongrass and geranium EOs was lower when mixed than when used separately (LC50 of 65.3 µg/µL). The same happened with savory thyme and white thyme EOs, except at 9.75 µg/µL where they had a synergistic effect (LC50 of 58.3 µg/µL). Lemongrass and savory thyme EOs had a synergistic effect at low concentrations, and an antagonistic effect at higher concentrations (LC50 of 95.4 µg/µL). Lemongrass and white thyme EOs had a synergistic effect against ticks from 15 to 120 µg/µL (LC50 of 18.5 µg/µL) similar to white thyme EO. Geranium and savory thyme EOs had an antagonistic effect at all concentrations, with an LC50 of 66.8 µg/µL. Geranium and white thyme EOs also had an antagonistic effect, except at 12.7 µg/µL where they had a synergistic effect (LC50 of 66.8 µg/µL). The interaction observed when combining selected essential oils suggests promising potential for developing acaricidal formulations aimed at controlling ticks and curbing the transmission of tick-borne disease agents.
Collapse
|
3
|
Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, Gomez-Alonso S, Deulofeu K, Fernandez-Moratalla I, Rajbhandari RM, Sojka D, Grubhoffer L, Karmacharya D, Gortazar C, de la Fuente J. Natural Clerodendrum-derived tick repellent: learning from Nepali culture. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00804-4. [PMID: 37285111 PMCID: PMC10293375 DOI: 10.1007/s10493-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - Paul D Kasaija
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- National Livestock Resources Research Institute (NaLIRRI/NARO), Wakiso District, P.O. Box 5704, Wakiso, Uganda
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Weronika Grąźlewska
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Eduardo Guisantes-Batan
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | - Sergio Gomez-Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | | | | | | | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Christian Gortazar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Pickett LJ, Amiro M, Hawboldt C, Faraone N. Common yarrow (Achillea millefolium) essential oil and main components as potential repellents and acaricides against Ixodes scapularis and Dermacentor variabilis (Acari: Ixodidae) ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:287-303. [PMID: 36905473 DOI: 10.1007/s10493-023-00782-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Repellent and acaricidal activities of essential oils (EO) extracted from common yarrow (Achillea millefolium L.) and main chemical components were evaluated against Ixodes scapularis and Dermacentor variabilis adult ticks and nymphs. Flowers and leaves were collected from two locations, Harvest Moon trail (HMT) and Port Williams (PW) in Nova Scotia (Canada), and EO were extracted via hydro-distillation. Samples were analyzed using GC-MS, and differences in chemical composition and quantity of compounds detected were reported in relation to the collection site and plant parts. EO were both rich in germacrene D (HMT EO 21.5 ± 1.31% wt; PW EO 25.5 ± 0.76% wt); however, HMT flower EO has a higher concentration of camphor (9.9 ± 0.08% wt) compared to PW flower EO (3.0 ± 0.01% wt). Significant acaricidal activity was reported against I. scapularis adult ticks, particularly for HMT flower EO with a LD50 of 2.4% v/v (95% confidence interval = 1.74-3.35) at 24 h post-exposure. Germacrene D had the lowest LD50 of 2.0% v/v (95% CI 1.45-2.58) among the four compounds after 7 days. No significant acaricidal effect was observed on D. variabilis adult ticks. Yarrow PW flower EO exerted repellent activity towards I. scapularis nymphs (100% repellency up to 30 min); however, repellency significantly declined over time. Yarrow EO exert promising acaricidal and repellent properties, that may be used to manage Ixodes ticks and the diseases they vector.
Collapse
Affiliation(s)
- Laura J Pickett
- Chemistry Department, Acadia University, Wolfville, NS, Canada
| | - Miranda Amiro
- Chemistry Department, Acadia University, Wolfville, NS, Canada
| | - Claire Hawboldt
- Chemistry Department, Acadia University, Wolfville, NS, Canada
| | | |
Collapse
|