1
|
Liu G, Lv Z, Wu Q, Zhou Z, Zhang G, Wan F, Yan Y. The Bactrocera dorsalis caspase-1 gene is expressed throughout development and required for female fertility. PEST MANAGEMENT SCIENCE 2020; 76:4104-4111. [PMID: 32578366 DOI: 10.1002/ps.5966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis is one of the most destructive pests of fruits and vegetables. The sterile insect technique (SIT) is an effective and environmentally friendly approach to the control of tephritid fruit flies. The pro-apoptotic gene head involution defective (hid) has been used as an effective lethal effector in SIT. It initiates an interaction cascade including activation of caspase-like proteases. However, the biological role of caspase activity in tephritid fruit flies has yet to be explored. RESULTS In this study, the B. dorsalis caspase-1 gene (Bdcp-1) was cloned and characterized. Sequence comparison showed that Bdcp-1 protein shared highly homology with Drosophila effector caspases Drice and Dcp-1. It is predicted to contain a short pro-domain because two proteolytic cleavage sites (Asp16 and Asp223 ) are present. Expression patterns indicated that Bdcp-1 is highly transcribed in embryos and expression was upregulated during metamorphosis and upon ultraviolet irradiation. RNA interference showed that Bdcp-1 is essential for ovarian development and female fertility. For example, knockdown of Bdcp-1 caused transcriptional downregulation of expression of the yolk protein-1 gene (Bdyp-1) and delayed ovarian development. The percentage of spawning females and female fecundity were significantly reduced. CONCLUSION This study illustrates the function of the Bdcp-1 gene and provides an attractive method to develop a biological way to control the oriental fruit fly through the control of caspases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, P. R. China
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhichuang Lv
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Wu
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
| | - Zhongshi Zhou
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guifen Zhang
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fanghao Wan
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Ying Yan
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
2
|
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190065. [PMID: 31438818 DOI: 10.1098/rstb.2019.0065] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In insects that undergo complete metamorphosis, cell death is essential for reshaping or removing larval tissues and organs, thus contributing to formation of the adult's body structure. In the last few decades, the study of metamorphosis in Lepidoptera and Diptera has provided broad information on the tissue remodelling processes that occur during larva-pupa-adult transition and made it possible to unravel the underlying regulatory pathways. This review summarizes recent knowledge on cell death mechanisms in Lepidoptera and other holometabolous insects, highlighting similarities and differences with Drosophila melanogaster, and discusses the role of apoptosis and autophagy in this developmental setting. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| |
Collapse
|
3
|
Design, Synthesis and Bioactivity Evaluation of Novel β-carboline 1,3,4-oxadiazole Derivatives. Molecules 2017; 22:molecules22111811. [PMID: 29109386 PMCID: PMC6150204 DOI: 10.3390/molecules22111811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
A series of novel β-carboline 1,3,4-oxadiazole derivatives were designed and synthesized, and the in vitro cytotoxic activity against Sf9 cells and growth inhibitory activity against Spodoptera litura were evaluated. Bioassay results showed that most of these compounds exhibited excellent in vitro cytotoxic activity. Especially, compound 37 displayed the best efficacy in vitro (IC50 = 3.93 μM), and was five-fold more potent than camptothecin (CPT) (IC50 = 18.95 μM). Moreover, compounds 5 and 37 could induce cell apoptosis and cell cycle arrest and stimulate Sf-caspase-1 activation in Sf9 cells. In vivo bioassay also demonstrated that compounds 5 and 37 could significantly inhibit larvae growth of S. litura with decreasing the weight of larvae and pupae. Based on these bioassay results, compounds 5 and 37 emerged as lead compounds for the development of potential insect growth inhibitions.
Collapse
|
4
|
Romanelli D, Casartelli M, Cappellozza S, de Eguileor M, Tettamanti G. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci Rep 2016; 6:32939. [PMID: 27609527 PMCID: PMC5016986 DOI: 10.1038/srep32939] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting.
Collapse
Affiliation(s)
- Davide Romanelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| | - Silvia Cappellozza
- CREA - Honey Bee and Silkworm Research Unit, Padua seat, 35143 Padova, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
5
|
Jiang K, Mei SQ, Wang TT, Pan JH, Chen YH, Cai J. Vip3Aa induces apoptosis in cultured Spodoptera frugiperda (Sf9) cells. Toxicon 2016; 120:49-56. [DOI: 10.1016/j.toxicon.2016.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/22/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
6
|
Yang Z, Zhou K, Liu H, Wu A, Mei L, Liu Q. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda. PLoS One 2016; 11:e0151016. [PMID: 26977926 PMCID: PMC4792459 DOI: 10.1371/journal.pone.0151016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 01/11/2023] Open
Abstract
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.
Collapse
Affiliation(s)
- Zhouning Yang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Ke Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Andong Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Long Mei
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Ying Z, Li A, Lu Z, Wu C, Yin H, Yuan M, Pang Y. The Spodoptera frugiperda effector caspase Sf-caspase-1 becomes unstable following its activation. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:195-210. [PMID: 23740663 DOI: 10.1002/arch.21106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sf-caspase-1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf-caspase-1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase-3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf-caspase-1: the pro-Sf-caspase-1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin-proteasome system. During the activation, the Sf-caspase-1 produces an intermediate form and then undergoes proteolytic processing to form active Sf-caspase-1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf-caspase-1 was unstable.
Collapse
Affiliation(s)
- Zhongfu Ying
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Mizerska-Dudka M, Andrejko M. Galleria mellonellahemocytes destruction after infection withPseudomonas aeruginosa. J Basic Microbiol 2013; 54:232-46. [DOI: 10.1002/jobm.201200273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mariola Andrejko
- Department of Immunobiology; Maria Curie-Sklodowska University; Lublin Poland
| |
Collapse
|
9
|
Heliothis zea nudivirus 1 gene hhi1 induces apoptosis which is blocked by the Hz-iap2 gene and a noncoding gene, pag1. J Virol 2011; 85:6856-66. [PMID: 21543471 DOI: 10.1128/jvi.01843-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heliothis zea nudivirus 1 (HzNV-1 or Hz-1 virus), previously regarded as a nonoccluded baculovirus, recently has been placed in the Nudivirus genus. This virus generates HzNV-1 HindIII-I 1 (hhi1) and many other transcripts during productive viral infection; during latent viral infection, however, persistency-associated gene 1 (pag1) is the only gene expressed. In this report, we used transient expression assays to show that hhi1 can trigger strong apoptosis in transfected cells, which can be blocked, at least partially, by the inhibitor of apoptosis genes Autographa californica iap2 (Ac-iap2) and H. zea iap2 (Hz-iap2). In addition to these two genes, unexpectedly, pag1, which encodes a noncoding RNA with no detectable protein product, was found to efficiently suppress hhi1-induced apoptosis. The assay of pro-Sf-caspase-1 processing by hhi1 transfection did not detect the small P12 subunit at any of the time intervals tested, suggesting that hhi1 of HzNV-1 induces apoptosis through alternative caspase pathways.
Collapse
|
10
|
Inhibition of microRNA-14 contributes to actinomycin-D-induced apoptosis in the Sf9 insect cell line. Cell Biol Int 2010; 34:851-7. [PMID: 20486901 DOI: 10.1042/cbi20100035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Actinomycin-D (Act-D) and other inhibitors of RNA synthesis induce extensive and rapid apoptosis in the lepidopteran insect cells. Interestingly, a similar effect is not observed in the case of protein synthesis shutdown, implying that certain RNA species may be critically required for cell survival. In order to assess whether depletion of certain anti-apoptotic microRNAs may result in insect cell apoptosis induced by these transcriptional inhibitors, we inhibited two antiapoptotic microRNAs, viz. bantam and miR-14 (microRNA-14), with known functions in insect systems, by transfecting lepidopteran Sf9 cell line (derived from Spodoptera frugiperda) with sequence-specific inhibitory anti-miRs. Our results indicate that miR-14 is indeed required for constitutive cell survival as its inhibition caused considerable apoptosis. Importantly, exogenous supplementation with the mimics of miR-14 precursor molecules could partially inhibit the Act-D-induced Sf9 cell death. Further, our results indicate that miR-14 may function downstream of mitochondrial cytochrome c release in preventing Act-D-induced apoptosis, implying possible inhibitory interactions with caspases as reported previously in other organisms. While the microRNA species are known to regulate cell death in Drosophila, which belongs the insect order Diptera, the present study demonstrates a definitive antiapoptotic role of miR-14 in lepidopteran apoptosis as well. Our study also indicates that additional microRNA species may be regulating lepidopteran cell survival and death, thus warranting further in-depth investigations into these important mechanisms of cell death. Since lepidopteran cells are an excellent model for general stress resistance, this study presents important information about their stress response mechanisms.
Collapse
|
11
|
|
12
|
Hebert CG, Valdes JJ, Bentley WE. Investigating apoptosis: characterization and analysis of Trichoplusia ni-caspase-1 through overexpression and RNAi mediated silencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:113-124. [PMID: 19027856 DOI: 10.1016/j.ibmb.2008.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 05/27/2023]
Abstract
In both mammals and invertebrates, caspases play a critical role in apoptosis. Although Lepidopteron caspases have been widely studied in Spodoptera frugiperda cells, this is not the case for Trichoplusia ni cells, despite their widespread use for the production of recombinant protein and differences in baculovirus infectivity between the two species. We have cloned, expressed, purified and characterized Tn-caspase-1 in several situations: in its overexpression, in silencing via RNA interference (RNAi), during baculovirus infection, and in interactions with baculovirus protein p35. Overexpression can transiently increase caspase activity in T. ni (High Five) cells, while silencing results in a greater than 6-fold decrease. The reduction in caspase activity resulted in a reduction in the level of apoptosis, demonstrating the ability to affect apoptosis by modulating Tn-caspase-1. During baculovirus infection, caspase activity remains low until approximately 5 days post infection, at which point it increases dramatically, though not in those cells treated with dsRNA. Our results demonstrate that Tn-caspase-1 is presumably the principal effector caspase present in High Five cells, and that it is inhibited by baculovirus protein p35. Finally, our results indicate differences between RNAi and p35 as effector molecules for modulating caspase activity and apoptosis during cell growth and baculovirus infection.
Collapse
Affiliation(s)
- Colin G Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, MD 20742, USA
| | | | | |
Collapse
|
13
|
Parthasarathy R, Palli SR. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 2007; 124:23-34. [PMID: 17107775 DOI: 10.1016/j.mod.2006.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/12/2006] [Accepted: 09/16/2006] [Indexed: 11/22/2022]
Abstract
Midgut tissue undergoes remodeling during metamorphosis in insects belonging to orders Lepidoptera and Diptera. We investigated the developmental and hormonal regulation of these remodeling events in lepidopteran insect, Heliothis virescens. In H. virescens, programmed cell death (PCD) of larval midgut cells as well as proliferation and differentiation of imaginal cells began at 108 h after ecdysis to the final larval instar (AEFL) and proceeded through the pupal stages. Expression patterns of pro- cell death factors (caspase-1 and ICE) and anti-cell death factor, Inhibitor of Apoptosis (IAP) were studied in midguts during last larval and pupal stages. IAP, Caspase-1 and ICE mRNAs showed peaks at 48 h AEFL, 96 h AEFL and in newly formed pupae, respectively. Immunohistochemical analysis substantiated high caspase-3 activity in midgut at 108 h AEFL. Application of methoprene, a juvenile hormone analog (JHA) blocked PCD by maintaining high levels of IAP, downregulating the expression of caspase-1, ICE and inhibiting an increase in caspase-3 protein levels in midgut tissue. Also, the differentiation of imaginal cells was impaired by methoprene treatment. These studies demonstrate that presence of JHA during final instar larvae affects both midgut remodeling and larval-pupal metamorphosis leading to larval/pupal deformities in lepidopteran insects, a mechanism that is different from that in mosquito, Ae. aegypti where JHA uncouples midgut remodeling from metamorphosis.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|