1
|
Fahmi T, Wang X, Zhdanov DD, Islam I, Apostolov EO, Savenka AV, Basnakian AG. DNase I Induces Other Endonucleases in Kidney Tubular Epithelial Cells by Its DNA-Degrading Activity. Int J Mol Sci 2020; 21:ijms21228665. [PMID: 33212932 PMCID: PMC7698339 DOI: 10.3390/ijms21228665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023] Open
Abstract
Endonuclease-mediated DNA fragmentation is both an immediate cause and a result of apoptosis and of all other types of irreversible cell death after injury. It is produced by nine enzymes including DNase I, DNase 2, their homologs, caspase-activated DNase (CAD) and endonuclease G (EndoG). The endonucleases act simultaneously during cell death; however, regulatory links between these enzymes have not been established. We hypothesized that DNase I, the most abundant of endonucleases, may regulate other endonucleases. To test this hypothesis, rat kidney tubular epithelial NRK-52E cells were transfected with the DNase I gene or its inactive mutant in a pECFP expression vector, while control cells were transfected with the empty vector. mRNA expression of all nine endonucleases was studied using real-time RT-PCR; DNA strand breaks in endonuclease genes were determined by PCR and protein expression of the enzymes was measured by Western blotting and quantitative immunocytochemistry. Our data showed that DNase I, but not its inactive mutant, induces all other endonucleases at varying time periods after transfection, causes DNA breaks in endonuclease genes, and elevates protein expression of several endonucleases. This is the first evidence that endonucleases seem to be induced by the DNA-degrading activity of DNase I.
Collapse
Affiliation(s)
- Tariq Fahmi
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Xiaoying Wang
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Dmitry D. Zhdanov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Intisar Islam
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Eugene O. Apostolov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alena V. Savenka
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
| | - Alexei G. Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (T.F.); (X.W.); (D.D.Z.); (I.I.); (E.O.A.); (A.V.S.)
- Central Arkansas Veterans Healthcare System, 4300 West 7th Street, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-352-2870
| |
Collapse
|
2
|
Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Plyasova AA, Sokolov NN. Endonuclease G modulates the alternative splicing of deoxyribonuclease 1 mRNA in human CD4 + T lymphocytes and prevents the progression of apoptosis. Biochimie 2018; 157:158-176. [PMID: 30521874 DOI: 10.1016/j.biochi.2018.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Apoptotic endonucleases act cooperatively to fragment DNA and ensure the irreversibility of apoptosis. However, very little is known regarding the potential regulatory links between endonucleases. Deoxyribonuclease 1 (DNase I) inactivation is caused by alternative splicing (AS) of DNase I pre-mRNA skipping exon 4, which occurs in response to EndoG overexpression in cells. The current study aimed to determine the role of EndoG in the regulation of DNase I mRNA AS and the modulation of its enzymatic activity. A strong correlation was identified between the EndoG expression levels and DNase I splice variants in human lymphocytes. EndoG overexpression in CD4+ T cells down-regulated the mRNA levels of the active full-length DNase I variant and up-regulated the levels of the non-active spliced variant, which acts in a dominant-negative fashion. DNase I AS was induced by the translocation of EndoG from mitochondria into nuclei during the development of apoptosis. The DNase I spliced variant was induced by recombinant EndoG or by incubation with EndoG-digested cellular RNA in an in vitro system with isolated cell nuclei. Using antisense DNA oligonucleotides, we identified a 72-base segment that spans the adjacent segments of exon 4 and intron 4 and appears to be responsible for the AS. DNase I-positive CD4+ T cells overexpressing EndoG demonstrated decreased progression towards bleomycin-induced apoptosis. Therefore, EndoG is an endonuclease with the unique ability to inactivate another endonuclease, DNase I, and to modulate the development of apoptosis.
Collapse
Affiliation(s)
- Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia.
| | - Yulia A Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Vadim S Pokrovsky
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia; Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia; N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478, Moscow, Russia
| | - Dmitry V Grishin
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Vladimir A Grachev
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia
| | - Valentina S Orlova
- Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198, Moscow, Russia
| | | | | | - Anna A Plyasova
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| | - Nikolay N Sokolov
- Institute of Biomedical Chemistry, Pogodinskaya St 10/8, 119121, Moscow, Russia
| |
Collapse
|
3
|
Jang DS, Penthala NR, Apostolov EO, Wang X, Fahmi T, Crooks PA, Basnakian AG. Novel high-throughput deoxyribonuclease 1 assay. ACTA ACUST UNITED AC 2014; 20:202-11. [PMID: 25326282 DOI: 10.1177/1087057114555828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deoxyribonuclease I (DNase I), the most active and abundant apoptotic endonuclease in mammals, is known to mediate toxic, hypoxic, and radiation injuries to the cell. Neither inhibitors of DNase I nor high-throughput methods for screening of high-volume chemical libraries in search of DNase I inhibitors are, however, available. To overcome this problem, we developed a high-throughput DNase I assay. The assay is optimized for a 96-well plate format and based on the increase of fluorescence intensity when fluorophore-labeled oligonucleotide is degraded by the DNase. The assay is highly sensitive to DNase I compared to other endonucleases, reliable (Z' ≥ 0.5), and operationally simple, and it has low operator, intraassay, and interassay variability. The assay was used to screen a chemical library, and several potential DNase I inhibitors were identified. After comparison, 2 hit compounds were selected and shown to protect against cisplatin-induced kidney cell death in vitro. This assay will be suitable for identifying inhibitors of DNase I and, potentially, other endonucleases.
Collapse
Affiliation(s)
- Dae Song Jang
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eugene O Apostolov
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaoying Wang
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tariq Fahmi
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexei G Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA Renal Medicine Service, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|