1
|
Reshetnyak VI, Maev IV. New insights into the pathogenesis of primary biliary cholangitis asymptomatic stage. World J Gastroenterol 2023; 29:5292-5304. [PMID: 37899787 PMCID: PMC10600802 DOI: 10.3748/wjg.v29.i37.5292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic progressive liver disease and one of the most important progressive cholangiopathies in adults. Damage to cholangiocytes triggers the development of intrahepatic cholestasis, which progresses to cirrhosis in the terminal stage of the disease. Accumulating data indicate that damage to biliary epithelial cells [(BECs), cholangiocytes] is most likely associated with the intracellular accumulation of bile acids, which have potent detergent properties and damaging effects on cell membranes. The mechanisms underlying uncontrolled bile acid intake into BECs in PBC are associated with pH change in the bile duct lumen, which is controlled by the bicarbonate (HCO3-) buffer system "biliary HCO3- umbrella". The impaired production and entry of HCO3- from BECs into the bile duct lumen is due to epigenetic changes in expression of the X-linked microRNA 506. Based on the growing body of knowledge on the molecular mechanisms of cholangiocyte damage in patients with PBC, we propose a hypothesis explaining the pathogenesis of the first morphologic (ductulopenia), immunologic (antimitochondrial autoantibodies) and clinical (weakness, malaise, rapid fatigue) signs of the disease in the asymptomatic stage. This review focuses on the consideration of these mechanisms.
Collapse
Affiliation(s)
- Vasiliy Ivanovich Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Igor Veniaminovich Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| |
Collapse
|
2
|
Abstract
Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C-C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.
Collapse
|
3
|
Abstract
Apoptosis is the predominant mechanism of liver cell death in autoimmune hepatitis, and interventions that can modulate this activity are emerging. The aim of this review was to describe the apoptotic mechanisms, possible aberrations, and opportunities for intervention in autoimmune hepatitis. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, apoptosis in liver disease, apoptosis mechanisms, and apoptosis treatment were examined. Apoptosis is overactive in autoimmune hepatitis, and the principal pathway of cell death is receptor mediated. Surface death receptors are activated by extrinsic factors including liver-infiltrating cytotoxic T cells and the cytokine milieu. The executioner caspases 3 and 7 cleave nuclear deoxyribonucleic acid, and the release of apoptotic bodies can stimulate inflammatory, immune, and fibrotic responses. Changes in mitochondrial membrane permeability can be initiated by caspase 8, and an intrinsic pathway of apoptosis can complement the extrinsic pathway. Defects in the apoptosis of activated effector cells can prolong their survival and sustain the immune response. Caspase inhibitors have been used in diverse experimental and human diseases to retard apoptosis. Oligonucleotides that inhibit the signaling of toll-like receptors can limit the presentation of auto-antigens, and inhibitors of apoptosis that extend the survival of effector cells can be blocked by antisense oligonucleotides. Mechanisms that enhance the clearance of apoptotic bodies and affect key signaling pathways are also feasible. Interventions that influence the survival of liver and effector cells by altering their apoptosis are candidates for study in autoimmune hepatitis.
Collapse
|
4
|
Czaja AJ. Review article: permanent drug withdrawal is desirable and achievable for autoimmune hepatitis. Aliment Pharmacol Ther 2014; 39:1043-58. [PMID: 24628539 DOI: 10.1111/apt.12701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/09/2014] [Accepted: 02/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autoimmune hepatitis can be rendered treatment-free, but the difficulty, frequency and risks associated with the pursuit of this outcome are unclear. AIM To describe the frequency that autoimmune hepatitis can be rendered treatment-free, identify the features that characterise these patients, examine the pathogenic pathways that may sustain or terminate the disease and indicate management protocols that can obtain this result. METHODS Studies cited in Pub Med from 1972-2014 for autoimmune hepatitis, treatment, relapse, remission and outcome were selected. RESULTS The frequency of a treatment-free state varies from 19% to 40% in patients observed for ≥3 years after drug withdrawal. Complete laboratory resolution and reversion to normal liver tissue prior to drug withdrawal favours this response. The development of cirrhosis during therapy may increase treatment-dependence. Persistent liver damage and the generation of neo-antigens during the apoptosis of hepatocytes may perpetuate the disease. Genetic and age-related effects on the vigour of the immune response may also contribute. Reversion to normal liver tissue is achieved in only 22% of patients during conventional corticosteroid therapy, and the emerging pharmacological and biological interventions may improve this frequency. A management strategy designed to achieve a treatment-free state accommodates all candidates for this outcome, and it can be modified to a long-term maintenance strategy as warranted by the clinical response. CONCLUSIONS Permanent drug withdrawal is a treatment outcome that is desirable and achievable in patients with autoimmune hepatitis. Normalisation of liver tests and liver tissue during treatment enhances this occurrence.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
5
|
Ninomiya M, Kondo Y, Funayama R, Nagashima T, Kogure T, Kakazu E, Kimura O, Ueno Y, Nakayama K, Shimosegawa T. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One 2013; 8:e66086. [PMID: 23776611 PMCID: PMC3680413 DOI: 10.1371/journal.pone.0066086] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS MicroRNAs are small endogenous RNA molecules with specific expression patterns that can serve as biomarkers for numerous diseases. However, little is known about the expression profile of serum miRNAs in PBC. METHODS First, we employed Illumina deep sequencing for the initial screening to indicate the read numbers of miRNA expression in 10 PBC, 5 CH-C, 5 CH-B patients and 5 healthy controls. Comparing the differentially expressed miRNAs in the 4 groups, analysis of variance was performed on the number of sequence reads to evaluate the statistical significance. Hierarchical clustering was performed using an R platform and we have found candidates for specific miRNAs in the PBC patients. Second, a quantitative reverse transcription PCR validation study was conducted in 10 samples in each group. The expression levels of the selected miRNAs were presented as fold-changes (2(-ΔΔCt)). Finally, computer analysis was conducted to predict target genes and biological functions with MiRror 2.0 and DAVID v6.7. RESULTS We obtained about 12 million 32-mer short RNA reads on average per sample and the mapping rates to miRBase were 16.60% and 81.66% to hg19. In the statistical significance testing, the expression levels of 81 miRNAs were found to be differentially expressed in the 4 groups. The heat map and hierarchical clustering demonstrated that the miRNA profiles from PBC clustered with those of CH-B, CH-C and healthy controls. Additionally, the circulating levels of hsa-miR-505-3p, 197-3p, and 500a-3p were significantly decreased in PBC compared with healthy controls and the expression levels of hsa-miR-505-3p, 139-5p and 197-3p were significantly reduced compared with the viral hepatitis group. CONCLUSIONS Our results indicate that sera from patients with PBC have a unique miRNA expression profile and that the down-regulated expression of hsa-miR-505-3p and miR-197-3p can serve as clinical biomarkers of PBC.
Collapse
Affiliation(s)
- Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
- * E-mail:
| | - Ryo Funayama
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Eiji Kakazu
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Osamu Kimura
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, Tohoku University School of Medicine, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
6
|
Blume KE, Soeroes S, Keppeler H, Stevanovic S, Kretschmer D, Rautenberg M, Wesselborg S, Lauber K. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic "find-me" signal. THE JOURNAL OF IMMUNOLOGY 2011; 188:135-45. [PMID: 22116825 DOI: 10.4049/jimmunol.1004073] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Annexin A1 is an intracellular calcium/phospholipid-binding protein that is involved in membrane organization and the regulation of the immune system. It has been attributed an anti-inflammatory role at various control levels, and recently we could show that annexin A1 externalization during secondary necrosis provides an important fail-safe mechanism counteracting inflammatory responses when the timely clearance of apoptotic cells has failed. As such, annexin A1 promotes the engulfment of dying cells and dampens the postphagocytic production of proinflammatory cytokines. In our current follow-up study, we report that exposure of annexin A1 during secondary necrosis coincided with proteolytic processing within its unique N-terminal domain by ADAM10. Most importantly, we demonstrate that the released peptide and culture supernatants of secondary necrotic, annexin A1-externalizing cells induced chemoattraction of monocytes, which was clearly reduced in annexin A1- or ADAM10-knockdown cells. Thus, altogether our findings indicate that annexin A1 externalization and its proteolytic processing into a chemotactic peptide represent final events during apoptosis, which after the transition to secondary necrosis contribute to the recruitment of monocytes and the prevention of inflammation.
Collapse
Affiliation(s)
- Karin E Blume
- Department of Internal Medicine I, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Daniilidou M, Tsolaki M, Giannakouros T, Nikolakaki E. Detection of elevated antibodies against SR protein kinase 1 in the serum of Alzheimer's disease patients. J Neuroimmunol 2011; 238:67-72. [PMID: 21794928 DOI: 10.1016/j.jneuroim.2011.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/23/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
Autoantibodies targeting specific cellular antigens are often present in sera and cerebrospinal fluids (CSFs) of patients with Alzheimer's disease (AD) and could play a role in the onset and/or progression of the disease. In this study we identified SR Protein Kinase 1 (SRPK1) as a new autoantigen elevated in AD. SRPK1, the prototype of the serine/arginine family of kinases, has been implicated in the regulation of multiple cellular processes such as pre-mRNA splicing, cell proliferation, chromatin structure, nuclear import and germ cell development. Using an ELISA assay, anti-SRPK1 antibodies, targeting mainly the first catalytic domain of the kinase, were detected in sera of patients with AD, at significantly elevated levels as compared to control subjects. The findings of this study document for the first time the existence of antibodies targeting SRPK1 in human sera and are indicative of a correlation between the levels of a-SRPK1 antibodies and the incidence of AD.
Collapse
Affiliation(s)
- Makrina Daniilidou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | | | | |
Collapse
|
8
|
Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010; 15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.
Collapse
|
9
|
Abstract
Primary biliary cirrhosis (PBC) is a chronic, progressive, cholestatic, organ-specific autoimmune disease of unknown etiology. It predominantly affects middle-aged women, and is characterized by autoimmune-mediated destruction of small- and medium-size intrahepatic bile ducts, portal inflammation and progressive scarring, which without proper treatment can ultimately lead to fibrosis and hepatic failure. Serum autoantibodies are crucial tools for differential diagnosis of PBC. While it is currently accepted that antimitochondrial antibodies are the most important serological markers of PBC, during the last five decades more than sixty autoantibodies have been explored in these patients, some of which had previously been thought to be specific for other autoimmune diseases.
Collapse
|
10
|
Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis. World J Gastrointest Pathophysiol 2010; 1:30-7. [PMID: 21607140 PMCID: PMC3097945 DOI: 10.4291/wjgp.v1.i2.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 02/07/2023] Open
Abstract
Cholangiocytes are the epithelial cells that line the biliary tree. In the adult liver, they are a mitotically dormant cell population, unless ductular reaction is triggered by injury. The ability of cholangiocytes to proliferate is important in many different human pathological liver conditions that target this cell type, which are termed cholangiopathies (i.e. primary biliary cirrhosis, primary sclerosing cholangitis and biliary atresia). In our article, we provide background information on the morphological and functional heterogeneity of cholangiocytes, summarize what is currently known about their proliferative processes, and briefly describe the diseases that target these cells. In addition, we address recent findings that suggest cholangiocyte involvement in epithelial-to-mesenchymal transformation and liver fibrosis, and propose directions for future studies.
Collapse
|
11
|
Abstract
Bile duct damage is present in virtually all cholangiopathies, which share the biliary epithelial cells (i.e. cholangiocytes) as a common pathogenic target. Cholangiocyte cell death largely occurs through the process of apoptosis. In this review, we will summarize the mechanisms through which biliary damage occurs in a variety of animal and in vitro models, such as extrahepatic cholestasis induced by bile duct ligation (BDL), cytotoxin- and hepatotoxin-induced liver injury, and biliary atresia. Although we have increased our knowledge of the factors that regulate cholangiocyte cell death mechanisms during cholangiopathies, especially in experimental models, there is still a lack of effective treatment modalities for these biliary disorders. However, future studies will hopefully provide for new therapeutic modalities for the prevention or restoration of biliary mass and function lost during the progression of cholangiopathies.
Collapse
Affiliation(s)
- Fuquan Yang
- Department of Medicine, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, Texas
| | | | | | | | | | | |
Collapse
|
12
|
Kremer AE, Rust C, Eichhorn P, Beuers U, Holdenrieder S. Immune-mediated liver diseases: programmed cell death ligands and circulating apoptotic markers. Expert Rev Mol Diagn 2009; 9:139-56. [PMID: 19298138 DOI: 10.1586/14737159.9.2.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis are the three major immune-mediated liver diseases. The etiologies of primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis are largely unknown, but seem to be influenced by genetic and environmental factors. Autoantibodies can be found in nearly all patients with primary sclerosing cholangitis and autoimmune hepatitis, and in the vast majority of patients with primary sclerosing cholangitis. In addition, autoimmune hepatitis is associated with high concentrations of serum globulins. Enhanced liver cell death by apoptosis has been described in all of these liver diseases, although the precise mechanisms remain unclear. In general, apoptosis can be initiated via an extrinsic pathway that is triggered by engagement of death receptors on the cell surface, or via an intrinsic pathway that is induced by mitochondrial injury and is influenced by members of the Bcl-2 family. In both pathways, effector caspases are finally activated that cleave and degrade cell structures, resulting in the release of apoptotic products into the circulation. New diagnostic tests can detect these apoptotic markers and programmed cell death ligands such as Fas and Fas-ligands, nucleosomes, caspases, cytokeratin fragments, macrophage migration inhibitory factor, soluble intracellular adhesion molecule, natural killer cells group 2D and programmed death ligands. Several of these markers have been found to be altered in tissue and/or blood of immune-mediated liver diseases, some also in nonimmune-mediated liver diseases. Beyond their potential usefulness as additional diagnostic markers, they may be valuable for the estimation of disease severity and therapy monitoring. This review summarizes current knowledge on apoptotic mechanisms, death receptor ligands and circulating apoptotic markers in immune-mediated liver diseases.
Collapse
Affiliation(s)
- Andreas E Kremer
- AMC Liver Center, S1-164, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Rosen A, Casciola-Rosen L (Johns Hopkins University School of Medicine, Baltimore, MD, USA). Autoantigens in systemic autoimmunity: critical partner in pathogenesis (Review). J Intern Med 2009; 265: 625-631.Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as 'neo-antigens', that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo.
Collapse
Affiliation(s)
- A Rosen
- Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Primary biliary cirrhosis, primary sclerosing cholangitis and biliary atresia are thought to be immune-mediated cholangiopathies, however, gaps in knowledge remain with regard to the immunopathogenesis of these diseases. RECENT FINDINGS In this review, we highlight recent investigations pertaining to the role of both innate and adaptive immunity in bile duct damage. In innate immunity, evidence is presented for the contribution of cholangiocyte toll-like receptor stimulation promoting the ongoing inflammatory response. Innate-like lymphocytes may also be critical in the early phases of small bile duct injury found in primary biliary cirrhosis. With regard to adaptive immunity, the role of specific gene deficiencies in the susceptibility to immune-mediated cholangiopathies is reviewed. Furthermore, recent work analyzing the effector mechanisms of adaptive immunity leading to bile duct epithelial apoptosis are outlined. SUMMARY Understanding the intricacies of the inflammatory mechanisms culminating in bile duct epithelial injury are crucial to the future development of therapies aimed at halting the ongoing biliary tract destruction found in immune-mediated cholangiopathies. A paucity of research studies on primary sclerosing cholangitis was noted in this review and future research efforts should focus on primary sclerosing cholangitis, in addition to primary biliary cirrhosis and biliary atresia.
Collapse
|
15
|
Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13:463-82. [PMID: 18322800 PMCID: PMC7102248 DOI: 10.1007/s10495-008-0187-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 01/11/2023]
Abstract
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.
Collapse
|