1
|
Zhu T, Yao C, Hong S, Song W, Zanuri NM, Lv W, Jiang Q. Multi-omics reveal toxicity mechanisms underpinning nanoplastic in redclaw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175680. [PMID: 39173758 DOI: 10.1016/j.scitotenv.2024.175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 μg/L; Low: 100 μg/L; Medium: 500 μg/L; and High: 1000 μg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P < 0.05) but significantly increased malondialdehyde content (MDA) (P < 0.05) in NP-treated groups. By analyzing different metabolic indicators, total cholesterol (T-CHO) content significantly increased (P < 0.05) and triglyceride (TG) content significantly decreased in Medium and High (P < 0.05). Transcriptomic analyses revealed that NPs influenced apoptosis, drug metabolism-cytochrome P450, and P53 signaling pathways. Metabolomic analyses indicated some metabolic processes were affected by NPs, including bile secretion, primary bile acid biosynthesis, and cholesterol metabolism. Caspase 3, 8, and 9 distribution levels in hepatopancreatic tissues were also determined by immunofluorescence; positive caspase staining increased with increased NP concentrations. Additionally, by examining relative Bcl-2, Bax, Apaf-1, and p53 mRNA expression levels, Bcl-2 expression was significantly decreased with increasing NP concentrations; and the expression of Bcl-2 was increasing significantly with the NPs concentration increasing. Bax expression in Low, Medium, and High groups was also significantly higher when compared with the CK group (P < 0.05); with High group levels significantly higher than in Low and Medium groups (P < 0.05). P53 expression was significantly increased in Low, Medium, and High groups (P < 0.05). Thus, NPs induced apoptosis in C. quadricarinatus hepatopancreatic cells, concomitant with increasing NP concentrations. Therefore, we identified mechanisms underpinning NP toxicity in C. quadricarinatus and provide a theoretical basis for exploring NP toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tian Zhu
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Norlaila Mohd Zanuri
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, No. 79 Chating East Rd, Nanjing 210017, China.
| |
Collapse
|
2
|
Frigo E, Tommasin L, Lippe G, Carraro M, Bernardi P. The Haves and Have-Nots: The Mitochondrial Permeability Transition Pore across Species. Cells 2023; 12:1409. [PMID: 37408243 PMCID: PMC10216546 DOI: 10.3390/cells12101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The demonstration that F1FO (F)-ATP synthase and adenine nucleotide translocase (ANT) can form Ca2+-activated, high-conductance channels in the inner membrane of mitochondria from a variety of eukaryotes led to renewed interest in the permeability transition (PT), a permeability increase mediated by the PT pore (PTP). The PT is a Ca2+-dependent permeability increase in the inner mitochondrial membrane whose function and underlying molecular mechanisms have challenged scientists for the last 70 years. Although most of our knowledge about the PTP comes from studies in mammals, recent data obtained in other species highlighted substantial differences that could be perhaps attributed to specific features of F-ATP synthase and/or ANT. Strikingly, the anoxia and salt-tolerant brine shrimp Artemia franciscana does not undergo a PT in spite of its ability to take up and store Ca2+ in mitochondria, and the anoxia-resistant Drosophila melanogaster displays a low-conductance, selective Ca2+-induced Ca2+ release channel rather than a PTP. In mammals, the PT provides a mechanism for the release of cytochrome c and other proapoptotic proteins and mediates various forms of cell death. In this review, we cover the features of the PT (or lack thereof) in mammals, yeast, Drosophila melanogaster, Artemia franciscana and Caenorhabditis elegans, and we discuss the presence of the intrinsic pathway of apoptosis and of other forms of cell death. We hope that this exercise may help elucidate the function(s) of the PT and its possible role in evolution and inspire further tests to define its molecular nature.
Collapse
Affiliation(s)
- Elena Frigo
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Ludovica Tommasin
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Giovanna Lippe
- Department of Medicine, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy;
| | - Michela Carraro
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy; (E.F.); (L.T.); (M.C.)
| |
Collapse
|
3
|
Zhong YH, Guo ZJ, Wei MY, Wang JC, Song SW, Chi BJ, Zhang YC, Liu JW, Li J, Zhu XY, Tang HC, Song LY, Xu CQ, Zheng HL. Hydrogen sulfide upregulates the alternative respiratory pathway in mangrove plant Avicennia marina to attenuate waterlogging-induced oxidative stress and mitochondrial damage in a calcium-dependent manner. PLANT, CELL & ENVIRONMENT 2023; 46:1521-1539. [PMID: 36658747 DOI: 10.1111/pce.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.
Collapse
Affiliation(s)
- You-Hui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ming-Yue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- School of Ecology, Resources and Environment, Dezhou University, Dezhou, Shandong, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Bing-Jie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Chao-Qun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Bolobolova EU, Dorogova NV, Fedorova SA. Major Scenarios of Genetically Regulated Cell Death during Oogenesis in Drosophilamelanogaster. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Dorogova NV, Bolobolova EU, Zakharenko LP. Cellular aspects of gonadal atrophy in Drosophila P-M hybrid dysgenesis. Dev Biol 2017; 424:105-112. [DOI: 10.1016/j.ydbio.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 02/01/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
6
|
Colin J, Garibal J, Clavier A, Szuplewski S, Risler Y, Milet C, Gaumer S, Guénal I, Mignotte B. Screening of suppressors of bax-induced cell death identifies glycerophosphate oxidase-1 as a mediator of debcl-induced apoptosis in Drosophila. Genes Cancer 2015; 6:241-253. [PMID: 26124923 PMCID: PMC4482245 DOI: 10.18632/genesandcancer.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/06/2015] [Indexed: 01/20/2023] Open
Abstract
Members of the Bcl-2 family are key elements of the apoptotic machinery. In mammals, this multigenic family contains about twenty members, which either promote or inhibit apoptosis. We have previously shown that the mammalian pro-apoptotic Bcl-2 family member Bax is very efficient in inducing apoptosis in Drosophila, allowing the study of bax-induced cell death in a genetic animal model. We report here the results of the screening of a P[UAS]-element insertion library performed to identify gene products that modify the phenotypes induced by the expression of bax in Drosophila melanogaster. We isolated 17 putative modifiers involved in various function or process: the ubiquitin/proteasome pathway; cell growth, proliferation and death; pathfinding and cell adhesion; secretion and extracellular signaling; metabolism and oxidative stress. Most of these suppressors also inhibit debcl-induced phenotypes, suggesting that the activities of both proteins can be modulated in part by common signaling or metabolic pathways. Among these suppressors, Glycerophosphate oxidase-1 is found to participate in debcl-induced apoptosis by increasing mitochondrial reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Jessie Colin
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Julie Garibal
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Amandine Clavier
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Sébastien Szuplewski
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Yanick Risler
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Cécile Milet
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Co-senior authors
| | - Bernard Mignotte
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France.,Co-senior authors
| |
Collapse
|
7
|
Jenkins VK, Timmons AK, McCall K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol 2013; 23:567-74. [PMID: 23968895 PMCID: PMC3839102 DOI: 10.1016/j.tcb.2013.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms.
Collapse
Affiliation(s)
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| |
Collapse
|
8
|
Sanchez-Martinez A, Calleja M, Peralta S, Matsushima Y, Hernandez-Sierra R, Whitworth AJ, Kaguni LS, Garesse R. Modeling pathogenic mutations of human twinkle in Drosophila suggests an apoptosis role in response to mitochondrial defects. PLoS One 2012; 7:e43954. [PMID: 22952820 PMCID: PMC3429445 DOI: 10.1371/journal.pone.0043954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/27/2012] [Indexed: 01/31/2023] Open
Abstract
The human gene C10orf2 encodes the mitochondrial replicative DNA helicase Twinkle, mutations of which are responsible for a significant fraction of cases of autosomal dominant progressive external ophthalmoplegia (adPEO), a human mitochondrial disease caused by defects in intergenomic communication. We report the analysis of orthologous mutations in the Drosophila melanogaster mitochondrial DNA (mtDNA) helicase gene, d-mtDNA helicase. Increased expression of wild type d-mtDNA helicase using the UAS-GAL4 system leads to an increase in mtDNA copy number throughout adult life without any noteworthy phenotype, whereas overexpression of d-mtDNA helicase containing the K388A mutation in the helicase active site results in a severe depletion of mtDNA and a lethal phenotype. Overexpression of two d-mtDNA helicase variants equivalent to two human adPEO mutations shows differential effects. The A442P mutation exhibits a dominant negative effect similar to that of the active site mutant. In contrast, overexpression of d-mtDNA helicase containing the W441C mutation results in a slight decrease in mtDNA copy number during the third instar larval stage, and a moderate decrease in life span in the adult population. Overexpression of d-mtDNA helicase containing either the K388A or A442P mutations causes a mitochondrial oxidative phosphorylation (OXPHOS) defect that significantly reduces cell proliferation. The mitochondrial impairment caused by these mutations promotes apoptosis, arguing that mitochondria regulate programmed cell death in Drosophila. Our study of d-mtDNA helicase overexpression provides a tractable Drosophila model for understanding the cellular and molecular effects of human adPEO mutations.
Collapse
Affiliation(s)
- Alvaro Sanchez-Martinez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red en Enfermedades Raras, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Santitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Manuel Calleja
- Centro de Biología Molecular “Severo Ochoa” Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Peralta
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red en Enfermedades Raras, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Santitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yuichi Matsushima
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Rosana Hernandez-Sierra
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red en Enfermedades Raras, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Santitaria Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alexander J. Whitworth
- Department of Biomedical Sciences, MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Laurie S. Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red en Enfermedades Raras, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Santitaria Hospital 12 de Octubre (i+12), Madrid, Spain
- * E-mail:
| |
Collapse
|
9
|
Reubold TF, Eschenburg S. A molecular view on signal transduction by the apoptosome. Cell Signal 2012; 24:1420-5. [PMID: 22446004 DOI: 10.1016/j.cellsig.2012.03.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
Apoptosomes are signaling platforms that initiate the dismantling of a cell during apoptosis. In mammals, assembly of the apoptosome is the pivotal point in the mitochondrial pathway of apoptosis, and is prompted by binding of cytochrome c to the apoptotic protease-activating factor 1 (Apaf-1) in the presence of ATP. The resulting wheel-like heptamer of seven molecules Apaf-1 and seven molecules cytochrome c binds and activates the initiator caspase-9, which in turn ignites the downstream caspase cascade. In this review we discuss the molecular determinants for the formation of the mammalian apoptosome and caspase activation and describe the related signaling platforms in flies and nematodes.
Collapse
Affiliation(s)
- Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
10
|
von Stockum S, Basso E, Petronilli V, Sabatelli P, Forte MA, Bernardi P. Properties of Ca(2+) transport in mitochondria of Drosophila melanogaster. J Biol Chem 2011; 286:41163-41170. [PMID: 21984833 DOI: 10.1074/jbc.m111.268375] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the pathways for Ca(2+) transport in mitochondria of the fruit fly Drosophila melanogaster. We demonstrate the presence of ruthenium red (RR)-sensitive Ca(2+) uptake, of RR-insensitive Ca(2+) release, and of Na(+)-stimulated Ca(2+) release in energized mitochondria, which match well characterized Ca(2+) transport pathways of mammalian mitochondria. Following larger matrix Ca(2+) loading Drosophila mitochondria underwent spontaneous RR-insensitive Ca(2+) release, an event that in mammals is due to opening of the permeability transition pore (PTP). Like the PTP of mammals, Drosophila Ca(2+)-induced Ca(2+) release could be triggered by uncoupler, diamide, and N-ethylmaleimide, indicating the existence of regulatory voltage- and redox-sensitive sites and was inhibited by tetracaine. Unlike PTP-mediated Ca(2+) release in mammals, however, it was (i) insensitive to cyclosporin A, ubiquinone 0, and ADP; (ii) inhibited by P(i), as is the PTP of yeast mitochondria; and (iii) not accompanied by matrix swelling and cytochrome c release even in KCl-based medium. We conclude that Drosophila mitochondria possess a selective Ca(2+) release channel with features intermediate between the PTP of yeast and mammals.
Collapse
Affiliation(s)
- Sophia von Stockum
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Emy Basso
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Valeria Petronilli
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics at the Istituto Ortopedico Rizzoli, I-40126 Bologna, Italy
| | - Michael A Forte
- Vollum Institute, Oregon Health & Sciences University, Portland, Oregon 97239
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy.
| |
Collapse
|
11
|
Muliyil S, Krishnakumar P, Narasimha M. Spatial, temporal and molecular hierarchies in the link between death, delamination and dorsal closure. Development 2011; 138:3043-54. [PMID: 21693520 DOI: 10.1242/dev.060731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dead cells in most epithelia are eliminated by cell extrusion. Here, we explore whether cell delamination in the amnioserosa, a seemingly stochastic event that results in the extrusion of a small fraction of cells and known to provide a force for dorsal closure, is contingent upon the receipt of an apoptotic signal. Through the analysis of mutant combinations and the profiling of apoptotic signals in situ, we establish spatial, temporal and molecular hierarchies in the link between death and delamination. We show that although an apoptotic signal is necessary and sufficient to provide cell-autonomous instructions for delamination, its induction during natural delamination occurs downstream of mitochondrial fragmentation. We further show that apoptotic regulators can influence both delamination and dorsal closure cell non-autonomously, presumably by influencing tissue mechanics. The spatial heterogeneities in delamination frequency and mitochondrial morphology suggest that mechanical stresses may underlie the activation of the apoptotic cascade through their influence on mitochondrial dynamics. Our results document for the first time the temporal propagation of an apoptotic signal in the context of cell behaviours that accomplish morphogenesis during development. They highlight the importance of mitochondrial dynamics and tissue mechanics in its regulation. Together, they provide novel insights into how apoptotic signals can be deployed to pattern tissues.
Collapse
Affiliation(s)
- Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
12
|
Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death. Cell Death Differ 2011; 18:1640-50. [PMID: 21475305 PMCID: PMC3172116 DOI: 10.1038/cdd.2011.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.
Collapse
|
13
|
Tanner EA, Blute TA, Brachmann CB, McCall K. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary. Development 2011; 138:327-38. [PMID: 21177345 DOI: 10.1242/dev.057943] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.
Collapse
|
14
|
Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics 2010; 11:611. [PMID: 21040523 PMCID: PMC3091752 DOI: 10.1186/1471-2164-11-611] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 10/31/2010] [Indexed: 12/29/2022] Open
Abstract
Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori.
Collapse
Affiliation(s)
- Jin-Ye Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Arthropoda is the largest of all animal phyla and includes about 90% of extant species. Our knowledge about regulation of apoptosis in this phylum is largely based on findings for the fruit fly Drosophila melanogaster. Recent work with crustaceans shows that apoptotic proteins, and presumably mechanisms of cell death regulation, are more diverse in arthropods than appreciated based solely on the excellent work with fruit flies. Crustacean homologs exist for many major proteins in the apoptotic networks of mammals and D. melanogaster, but integration of these proteins into the physiology and pathophysiology of crustaceans is far from complete. Whether apoptosis in crustaceans is mainly transcriptionally regulated as in D. melanogaster (e.g., RHG 'killer' proteins), or rather is controlled by pro- and anti-apoptotic Bcl-2 family proteins as in vertebrates needs to be clarified. Some phenomena like the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) are apparently lacking in crustaceans and may represent a vertebrate invention. We speculate that differences in regulation of the intrinsic pathway of crustacean apoptosis might represent a prerequisite for some species to survive harsh environmental insults. Pro-apoptotic stimuli described for crustaceans include UV radiation, environmental toxins, and a diatom-produced chemical that promotes apoptosis in offspring of a copepod. Mechanisms that serve to depress apoptosis include the inhibition of caspase activity by high potassium in energetically healthy cells, alterations in nucleotide abundance during energy-limited states like diapause and anoxia, resistance to opening of the calcium-induced MPTP, and viral accommodation during persistent viral infection. Characterization of the players, pathways, and their significance in the core machinery of crustacean apoptosis is revealing new insights for the field of cell death.
Collapse
|
16
|
|
17
|
Mollereau B. Cell death: what can we learn from flies? Editorial for the special review issue on Drosophila apoptosis. Apoptosis 2009; 14:929-34. [PMID: 19629695 DOI: 10.1007/s10495-009-0383-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|