1
|
Katoch A, Tripathi SK, Pal A, Das S. Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation. Cell Cycle 2021; 20:561-574. [PMID: 33629930 DOI: 10.1080/15384101.2021.1875670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regulated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of ∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, which is involved in cell proliferation. Further assays with anti-miR-186 established the interdependence of ∆40p53- miR-186-5p-YY1- cell proliferation. The results unravel a new dimension toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent of p53FL.
Collapse
Affiliation(s)
- Aanchal Katoch
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
2
|
Su S, Wang Y, Wang H, Huang W, Chen J, Xing J, Xu P, Yuan X, Huang C, Zhou Y. Comparative expression analysis identifies the respiratory transition-related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus). BMC Genomics 2018; 19:406. [PMID: 29843595 PMCID: PMC5975713 DOI: 10.1186/s12864-018-4662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background Chinese giant salamander (Andrias davidianus) undergoes a metamorphosis from aquatic larvae to terrestrial adults, with concomitant transfer of respiration from gills to lungs prior to metamorphosis. These two tissues, as well as skin, were sampled to identify the differentially expressed miRNAs. Results High-coverage reference transcriptome was generated from combined gill, lung and skin tissues of metamorphosing juveniles, and lung tissue of adults: 86,282 unigenes with total length of approximately 77,275,634 bp and N50 of 1732 bp were obtained. Among these, 13,246 unigenes were assigned to 288 pathways. To determine the possible involvement of miRNAs in the respiratory transition, small RNA libraries were sequenced; 282 miRNAs were identified, 65 among which were known and 217 novel. Based on the hierarchical clustering analysis, the twelve studied samples were classified into three major clusters using differentially expressed miRNAs. We have validated ten differentially expressed miRNAs and some of their related target genes using qPCR. These results largely corroborated the results of transcriptomic and miRNA analyses. Finally, an miRNA-gene-network was constructed. Among them, two miRNAs with target genes related to oxygen sensing were differentially expressed between gill and lung tissues. Three miRNAs were differentially expressed between the lungs of larvae and lungs of adults. Conclusions This study provides the first large-scale miRNA expression profile overview during the respiration transition from gills to lungs in Chinese giant salamander. Five differentially expressed miRNAs and their target genes were identified among skin, gill and lung tissues. These results suggest that miRNA profiles in respiratory tissues play an important role in the regulation of respiratory transition. Electronic supplementary material The online version of this article (10.1186/s12864-018-4662-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yuheng Wang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Huiwei Wang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Wei Huang
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Jun Chen
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China.
| | - Jun Xing
- Department of Animal Husbandry & Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Zhenjiang, 212400, People's Republic of China
| | - Pao Xu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Xinhua Yuan
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
| | - Caiji Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yulin Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| |
Collapse
|
3
|
Qin S, Chen M, Ji H, Liu GY, Mei H, Li K, Chen T. miR‑21‑5p regulates type II alveolar epithelial cell apoptosis in hyperoxic acute lung injury. Mol Med Rep 2018; 17:5796-5804. [PMID: 29436647 PMCID: PMC5866023 DOI: 10.3892/mmr.2018.8560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/22/2017] [Indexed: 11/11/2022] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) as one of the most common complications in patents on mechanical ventilation, and there are no efficient methods to overcome this at present. It was hypothesized that microRNA 21-5p(miR-21-5p) can promote the survival of type II alveolar epithelial cells (AECII), alleviating HALI. The present study aimed to combine gene chip analysis with the overexpression miR-21-5p to develop a novel therapeutic option for HALI. It was found that AECII apoptosis was an important pathogenic event in the development of HALI, and the overexpression of miR-21-5p prevented HALI, associated with reducing AECII apoptosis. These results were obtained using adenoviral/lentiviral vectors, which overexpressed miR-21-5p, to transfect AECII cells in vitro and in vivo. It was found that the overexpression of miR-21-5p reduced the apoptotic rate of the AECII cells. In addition, miR-21-5p decreased the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 and the expression of caspase-3. It was also revealed that the overexpression of miR-21-5p alleviated acute lung injury in adult rats exposed to a hyperoxic environment. These results suggest that miR-21-5p may become a novel therapeutic option for patients with HALI, by protecting AECII cells from apoptosis.
Collapse
Affiliation(s)
- Song Qin
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Miao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Hui Ji
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Guo-Yue Liu
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Kang Li
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Tao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines. J Biotechnol 2016; 235:150-61. [PMID: 26993211 DOI: 10.1016/j.jbiotec.2016.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
Abstract
As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics.
Collapse
|
5
|
Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA Regulation of Epithelial to Mesenchymal Transition. J Clin Med 2016; 5:jcm5010008. [PMID: 26784241 PMCID: PMC4730133 DOI: 10.3390/jcm5010008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors.
Collapse
Affiliation(s)
- Mohammed L Abba
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Nitin Patil
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Jörg Hendrik Leupold
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| | - Heike Allgayer
- Department of Experimental Surgery, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ruprecht Karl University of Heidelberg, Ludolf-Krehl-Str. 6, 68135 Mannheim, Germany.
| |
Collapse
|
6
|
Donzelli S, Cioce M, Muti P, Strano S, Yarden Y, Blandino G. MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Semin Cell Dev Biol 2016; 50:133-42. [PMID: 26773212 DOI: 10.1016/j.semcdb.2015.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
Emerging evidence point to a crucial role for non-coding RNAs in modulating homeostatic signaling under physiological and pathological conditions. MicroRNAs, the best-characterized non-coding RNAs to date, can exquisitely integrate spatial and temporal signals in complex networks, thereby confer specificity and sensitivity to tissue response to changes in the microenvironment. MicroRNAs appear as preferential partners for Receptor Tyrosine Kinases (RTKs) in mediating signaling under stress conditions. Stress signaling can be especially relevant to disease. Here we focus on the ability of microRNAs to mediate RTK signaling in cancer, by acting as both tumor suppressors and oncogenes. We will provide a few general examples of microRNAs modulating specific tumorigenic functions downstream of RTK signaling and integrate oncogenic signals from multiple RTKs. A special focus will be devoted to epidermal growth factor receptor (EGFR) signaling, a system offering relatively rich information. We will explore the role of selected microRNAs as bidirectional modulators of EGFR functions in cancer cells. In addition, we will present the emerging evidence for microRNAs being specifically modulated by oncogenic EGFR mutants and we will discuss how this impinges on EGFRmut driven chemoresistance, which fits into the tumor heterogeneity-driven cancer progression. Finally, we discuss how other non-coding RNA species are emerging as important modulators of cancer progression and why the scenario depicted herein is destined to become increasingly complex in the future.
Collapse
Affiliation(s)
- Sara Donzelli
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Mario Cioce
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Paola Muti
- Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Units, Regina Elena National Cancer Institute, 00144 Rome, Italy; Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada
| | - Yosef Yarden
- Dept of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giovanni Blandino
- Translational Oncogenomics, Regina Elena National Cancer Institute, 00144 Rome, Italy; Dept of Oncology, McMaster University, Hamilton, On L8V1C3, Canada.
| |
Collapse
|
7
|
Wang R, Fang J, Ma H, Feng L, Lian M, Yang F, Wang H, Wang Q, Chen X. Effect of microRNA-203 on tumor growth in human hypopharyngeal squamous cell carcinoma. Mol Cell Biochem 2015; 405:97-104. [PMID: 25840888 DOI: 10.1007/s11010-015-2401-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/27/2015] [Indexed: 01/27/2023]
Abstract
MicroRNAs (MiRNAs) have been recognized to regulate cancer initiation and progression in carcinogenesis as either oncogenes or tumor suppressor genes, but their role in hypopharyngeal cancer development is not clearly defined. To determine whether miRNA-203 can promote tumor growth in human hypopharyngeal squamous cell carcinoma, we conducted experiments on the functional study of miRNA-203 and identification of miRNA-203 regulated target genes in hypopharyngeal cancer cells. We found that cell proliferation and cell colony-forming increased more in the miRNA-203 up-regulated cancer cells than in the negative control cancer cells. Up-regulation of miRNA-203 accelerated cell cycle progression in hypopharyngeal cancer cells. TP63 and B3GNT5 mRNAs were identified and validated as targets of miRNA-203. However, transwell assay and wound scratch assay showed that miRNA-203 did not involve in invasion and metastasis in hypopharyngeal cancer cells. According to the results, we conclude that miRNA-203 can promote tumor growth in human hypopharyngeal squamous cell carcinoma. These results provide the convincing evidence for the first time that up-regulation of miRNA-203 contributes to the malignancy of hypopharyngeal squamous cell carcinoma, possibly through down-regulating TP63 and B3GNT5.
Collapse
Affiliation(s)
- Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kumar S, Tomar MS, Acharya A. Activation of p53-dependent/-independent pathways of apoptotic cell death by chelerythrine in a murine T cell lymphoma. Leuk Lymphoma 2015; 56:1846-55. [DOI: 10.3109/10428194.2014.974042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Abstract
Protein p73 is a member of the p53 protein family that can induce cell cycle arrest or apoptosis by the activation of p53-responsive genes as well as p53-independent pathways. Alternative promoter usage, together with differential splicing of the C-terminal exons, forms several distinct mRNAs that are translated into corresponding protein isoforms containing different domains. While TAp73 isoforms respond to genotoxic stress in a manner similar to tumor suppressor p53, ΔTAp73 isoforms inhibit apoptosis during normal development and in cancer cell lines. Thus, the impact of p73 on tumorigenesis depends on a subtle balance between tumor-promoting and -suppressing isoforms. Due to the structural homology between p53 and p73, a subtle balance among p53 family members and their isoforms could influence glioma cell evolution toward malignancy. Thus, the p73 status has to be considered when studying the regulatory role of p53 protein in gliomagenesis. The presented review summarizes recent knowledge about the issue of p73 and its isoforms with respect to neuro-oncology research.
Collapse
Affiliation(s)
- Radim Jancalek
- Department of Neurosurgery and International Clinical Research Center, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
10
|
Sahu SK, Mohanty S, Kumar A, Kundu CN, Verma SC, Choudhuri T. Epstein-Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor. Virology 2013; 448:333-43. [PMID: 24314664 DOI: 10.1016/j.virol.2013.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/15/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Abstract
The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein-Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein-Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C.
Collapse
Affiliation(s)
- Sushil Kumar Sahu
- Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | | | | | | | | | | |
Collapse
|
11
|
Ratovitski EA. Tumor Protein p63/microRNA Network in Epithelial Cancer Cells. Curr Genomics 2013; 14:441-52. [PMID: 24396276 PMCID: PMC3867720 DOI: 10.2174/13892029113146660011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Non-coding microRNAs are involved in multiple regulatory mechanisms underlying response of cancer cells to stress leading to apoptosis, cell cycle arrest and autophagy. Many molecular layers are implicated in such cellular response including epigenetic regulation of transcription, RNA processing, metabolism, signaling. The molecular interrelationship between tumor protein (TP)-p53 family members and specific microRNAs is a key functional network supporting tumor cell response to chemotherapy and potentially playing a decisive role in chemoresistance of human epithelial cancers. TP63 was shown to modulate the expression of numerous microRNAs involved in regulation of epithelial cell proliferation, differentiation, senescence, "stemness" and skin maintenance, epithelial/ mesenchymal transition, and tumorigenesis in several types of epithelial cancers (e.g. squamous cell carcinoma, ovarian carcinoma, prostate carcinoma, gastric cancer, bladder cancer, and breast tumors), as well as in chemoresistance of cancer cells. TP63/microRNA network was shown to be involved in cell cycle arrest, apoptosis, autophagy, metabolism and epigenetic transcriptional regulation, thereby providing the groundwork for novel chemotherapeutic venues.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, The Johns Hopkins University School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD 21231, U.S.A
| |
Collapse
|
12
|
Cremisi F. MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 2013; 7:141. [PMID: 24027496 PMCID: PMC3760135 DOI: 10.3389/fncel.2013.00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in crucial steps of neurogenesis, neural differentiation, and neuronal plasticity. Here we review experimental evidence suggesting that miRNAs may regulate the histogenesis of the cerebral cortex and neural retina. Both cortical and retinal early progenitor cells are multipotent, that is, they can generate different types of cortical or retinal cells, respectively, in one lineage. In both cortical and retinal development, the precise timing of activation of cell fate transcription factors results in a stereotyped schedule of generation of the different types of neurons. Emerging evidence indicates that miRNAs may play an important role in regulating such temporal programing of neuronal differentiation. Neuronal subtypes of the cortex and retina exhibit distinct miRNA signatures, implying that miRNA codes may be used to specify different types of neurons. Interfering with global miRNA activity changes the ratio of the different types of neurons produced. In fact, there are examples of cell fate genes that are regulated at the translational level, both in retinogenesis and in corticogenesis. A model depicting how miRNAs might orchestrate both the type and the birth of different neurons is presented and discussed. Glossary. • Lineage: the temporally ordered cell progeny of an individual progenitor cell. • Specification: the (reversible) process by which a cell becomes capable of, and biased toward, a particular fate. • Commitment: the process by which cell fate is fully determined and can no longer be affected by external cues. • Potency: the entire complement of cells that a progenitor can ultimately produce. • Multipotency: the ability to give rise to more than one cell type. • Progenitor: a dividing cell that, in contrast to a stem cell, cannot proliferate indefinitely. • Antago-miR: modified antisense oligonucleotide that blocks the activity of a miRNA. • Heterochronic neuron: type of neurons that is generated at inappropriate times of development. • Neuron birth date: the time of the last mitosis of a neuronal cell.
Collapse
|
13
|
Guo L, Sun B, Wu Q, Yang S, Chen F. miRNA-miRNA interaction implicates for potential mutual regulatory pattern. Gene 2012; 511:187-94. [PMID: 23031806 DOI: 10.1016/j.gene.2012.09.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Natural or endogenous sense/antisense miRNAs, located on sense and antisense strands in the same genomic region, respectively, are detected recently. However, little is known about these miRNA pairs, especially for their distributions in different animal species. We herein present systematic analysis of them in human, mouse and rat miRNAs, and their expression patterns based on deep sequencing datasets. METHODS AND RESULTS The phenomenon of miRNA-miRNA interaction could be detected in different animal species. The common miRNAs pairs were found across species. These miRNA pairs could form miRNA:miRNA duplex with complete complementary structure, and were prone to be located on specific chromosomes. They might be homologous miRNA genes (especially in human), or clustered in a gene cluster (especially in rat), or simultaneously detected in different genomic regions due to multicopy pre-miRNAs. Remarkably, some miRNA pairs, located in different genomic regions, also showed complementarity as well as endogenous sense/antisense miRNAs. Based on published deep sequencing datasets, one member of miRNA pairs always was abundantly expressed, whereas another was quite rare. Rare common target mRNAs of these miRNA pairs were predicted. CONCLUSIONS Interaction between miRNAs and significant expression divergence implied complex potential mutual regulatory pattern in the miRNA world. The study would enrich miRNA regulatory network.
Collapse
Affiliation(s)
- Li Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | |
Collapse
|
14
|
Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L. MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 2012; 19:1573-81. [PMID: 22858543 DOI: 10.1038/cdd.2012.96] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that promote post-transcriptional silencing of genes involved in a wide range of developmental and pathological processes. It is estimated that most protein-coding genes harbor miRNA recognition sequences in their 3' untranslated region and are thus putative targets. While functions of miRNAs have been extensively characterized in various tissues, their multiple contributions to cerebral cortical development are just beginning to be unveiled. This review aims to outline the evidence collected to date demonstrating a role for miRNAs in cerebral corticogenesis with a particular emphasis on pathways that control the birth and maturation of functional excitatory projection neurons.
Collapse
Affiliation(s)
- M-L Volvert
- GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Belgium
| | | | | | | | | |
Collapse
|
15
|
Alexandrova EM, Moll UM. Role of p53 family members p73 and p63 in human hematological malignancies. Leuk Lymphoma 2012; 53:2116-29. [PMID: 22497596 DOI: 10.3109/10428194.2012.684348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53, mutated in over half of human cancers and about 13% of all hematological malignancies, maintains genomic integrity and triggers cellular senescence and apoptosis of damaged cells. In contrast to p53, the homologs p73 and p63 play critical roles in development of the central nervous system and skin/limbs, respectively. Moreover, dependent on the context they can exert tumor suppressor activities that cooperate with p53. Unlike p53, p73 and p63 are rarely mutated in cancers. Instead, up-regulation of the anti-apoptotic dominant-negative ΔNp73 and ΔNp63 isoforms is the most frequent abnormality in solid cancers. In hematological malignancies the most frequent p73 defect is promoter methylation and loss of expression, associated with unfavorable clinical outcomes. This suggests an essential tumor suppressor role of p73 in blood cells, also supported by genetic mouse models. Many therapeutic approaches aiming to restore p73 activity are currently being investigated. In contrast, the most frequent p63 abnormality is protein overexpression, associated with higher disease grade and poorer prognosis. Surprisingly, although available data are still scarce, the emerging picture is up-regulation of transactivation-competent TAp63 isoforms, suggesting a tumor-promoting role in this context.
Collapse
|
16
|
Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One 2011; 6:e25832. [PMID: 22003408 PMCID: PMC3189221 DOI: 10.1371/journal.pone.0025832] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/12/2011] [Indexed: 01/04/2023] Open
Abstract
The mechanism of latent tuberculosis (TB) infection remains elusive. Several host factors that are involved in this complex process were previously identified. Micro RNAs (miRNAs) are endogenous ∼22 nt RNAs that play important regulatory roles in a wide range of biological processes. Several studies demonstrated the clinical usefulness of miRNAs as diagnostic or prognostic biomarkers in various malignancies and in a few nonmalignant diseases. To study the role of miRNAs in the transition from latent to active TB and to discover candidate biomarkers of this transition, we used human miRNA microarrays to probe the transcriptome of peripheral blood mononuclear cells (PBMCs) in patients with active TB, latent TB infection (LTBI), and healthy controls. Using the software package BRB Array Tools for data analyses, 17 miRNAs were differentially expressed between the three groups (P<0.01). Hierarchical clustering of the 17 miRNAs expression profiles showed that individuals with active TB clustered independently of individuals with LTBI or from healthy controls. Using the predicted target genes and previously published genome-wide transcriptional profiles, we constructed the regulatory networks of miRNAs that were differentially expressed between active TB and LTBI. The regulatory network revealed that several miRNAs, with previously established functions in hematopoietic cell differentiation and their target genes may be involved in the transition from latent to active TB. These results increase the understanding of the molecular basis of LTBI and confirm that some miRNAs may control gene expression of pathways that are important for the pathogenesis of this infectious disease.
Collapse
Affiliation(s)
- Chuan Wang
- Key Laboratory of Medical Molecular Virology and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Pérot G, Chibon F, Montero A, Lagarde P, de Thé H, Terrier P, Guillou L, Ranchère D, Coindre JM, Aurias A. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 177:2080-90. [PMID: 20884963 DOI: 10.2353/ajpath.2010.100104] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process.
Collapse
Affiliation(s)
- Gaëlle Pérot
- Institut Curie, Genetics and Biology of Cancers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|