1
|
Tao X, Li Y, Fan S, Wu L, Xin J, Su Y, Xian X, Huang Y, Huang R, Fang W, Liu Z. Downregulation of Linc00173 increases BCL2 mRNA stability via the miR-1275/PROCA1/ZFP36L2 axis and induces acquired cisplatin resistance of lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:12. [PMID: 36627670 PMCID: PMC9830831 DOI: 10.1186/s13046-022-02560-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/04/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND LINC00173 had been reported as a cisplatin (cis-diamminedichloroplatinum, DDP) chemotherapy-resistant inducer in small-cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). This study aimed to display reverse data for LINC00173 as a DDP chemosensitivity-inducing factor in lung adenocarcinoma (LUAD). METHODS LINC00173 was screened from the Gene Expression Omnibus database (GSE43493). The expression level of LINC00173 in LUAD tissues and cell lines was detected using in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Colony formation, cell viability, half-maximal inhibitory concentration, flow cytometry, and xenograft mouse model were used to evaluate the role of LINC00173 in the chemosensitivity of LUAD to DDP. The mechanism of LINC00173 in DDP resistance by mediating miR-1275/PROCA1/ZFP36L2 axis to impair BCL2 mRNA stability was applied, and co-immunoprecipitation, chromatin immunoprecipitation, RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays were performed. RESULTS LINC00173 downregulation in patients with DDP-resistant LUAD was correlated with poor prognosis. Further, LINC00173 expression was significantly reduced in DDP-resistant LUAD cells and DDP-treated human LUAD tissues. Suppressed LINC00173 expression in LUAD cells enhanced DDP chemoresistance in vivo and in vitro, while restored LINC00173 expression in DDP-resistant LUAD cells markedly regained chemosensitivity to DDP. Mechanistically, DDP-resistant LUAD cells activated PI3K/AKT signal and further elevated the c-Myc expression. The c-Myc, as an oncogenic transcriptional factor, bound to the promoter of LINC00173 and suppressed its expression. The reduced LINC00173 expression attenuated the adsorption of oncogenic miR-1275, downregulating the expression of miR-1275 target gene PROCA1. PROCA1 played a potential tumor-suppressive role inducing cell apoptosis and DDP chemosensitivity via recruiting ZFP36L2 to bind to the 3' untranslated region of BCL2, reducing the stability of BCL2 mRNA and thus activating the apoptotic signal. CONCLUSIONS This study demonstrated a novel and critical role of LINC00173. It was transcriptionally repressed by DDP-activated PI3K/AKT/c-Myc signal in LUAD, promoting DDP-acquired chemotherapeutic resistance by regulating miR-1275 to suppress PROCA1/ZFP36L2-induced BCL2 degradation, which led to apoptotic signal reduction. These data were not consistent with the previously described role of LINC00173 in SCLC or LUSC, which suggested that LINC00173 could play fine-tuned DDP resistance roles in different pathological subtypes of lung cancer. This study demonstrated that the diminished expression of LINC00173 might serve as an indicator of DDP-acquired resistance in LUAD.
Collapse
Affiliation(s)
- Xingyu Tao
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yang Li
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Songqing Fan
- grid.452708.c0000 0004 1803 0208The Second Xiangya Hospital of Central South University, Changsha, 410008 China
| | - Liyang Wu
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianyang Xin
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yun Su
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Xiaoyang Xian
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Yingying Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Rongquan Huang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436 China
| | - Weiyi Fang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China
| | - Zhen Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315 China ,grid.410737.60000 0000 8653 1072Department of Pathology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| |
Collapse
|
2
|
Liang X, Yang Q, Wang W, Liu T, Hu J. VE-822 mediated inhibition of ATR signaling sensitizes chondrosarcoma to cisplatin via reversion of the DNA damage response. Onco Targets Ther 2019; 12:6083-6092. [PMID: 31839711 PMCID: PMC6680083 DOI: 10.2147/ott.s211560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Cisplatin has been reported to elicit the DNA damage response (DDR) via activation of the ATR-Chk1 pathway, which in turn contributes to the induction of cisplatin resistance. Inhibition of ATR-Chk1 signaling reverses cisplatin resistance in some cancers. However, the influence of inhibiting ATR-Chk1 signaling on cisplatin resistance in chondrosarcoma cancer has not been reported. Materials and methods We compared the expression levels of ATR kinases in human nasopharyngeal carcinoma, choriocarcinoma and chondrosarcoma cell lines. We inhibited ATR kinase function with VE-822, a selective ATR inhibitor, and suppressed ATR kinase expression with shRNA. Western blotting, the CCK-8 assay, cell cycle distribution assay and apoptosis analysis were used to study the influence of inhibiting ATR-Chk1 signaling on reversing cisplatin resistance in chondrosarcoma cell lines. Results We found that chondrosarcoma cells expressed very low basal levels of phosphorylated ATR, but cisplatin treatment induced the activation of ATR-Chk1 signaling in a dose- and time-dependent manner, suggesting the induction of DDR. As expected, ATR inhibition with VE-822 reversed cisplatin-induced DDR and enhanced cisplatin-induced activation of H2AX, which is an important marker of DNA damage. Meanwhile, ATR inhibition by RNA interference also reversed DDR and promoted DNA damage. Furthermore, both pharmacological and molecular inhibition of ATR accelerated cisplatin-induced inhibition of cell proliferation and cell death. Conclusion Our results suggested that inhibiting ATR activation promoted cisplatin-induced cell death via reversion of DDR, and VE-822 may be a valuable strategy for the prevention of cisplatin resistance in chondrosarcoma.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Qiya Yang
- Chengnan Academy, Hunan First Normal University, Changsha, Hunan 410002, People's Republic of China
| | - Wanchun Wang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, People's Republic of China
| |
Collapse
|
3
|
Guan X, Lu J, Sun F, Li Q, Pang Y. The Molecular Evolution and Functional Divergence of Lamprey Programmed Cell Death Genes. Front Immunol 2019; 10:1382. [PMID: 31281315 PMCID: PMC6596451 DOI: 10.3389/fimmu.2019.01382] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
The programmed cell death (PDCD) family plays a significant role in the regulation of cell survival and apoptotic cell death. However, the evolution, distribution and role of the PDCD family in lampreys have not been revealed. Thus, we identified the PDCD gene family in the lamprey genome and classified the genes into five subfamilies based on orthologs of the genes, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. The distribution of the lamprey PDCD family and the immune response of the PDCD family in lampreys stimulated by different pathogens were also demonstrated. In addition, we investigated the molecular function of lamprey PDCD2, PDCD5, and PDCD10. Our studies showed that the recombinant lamprey PDCD5 protein and transfection of the L-PDCD5 gene induced cell apoptosis, upregulated the expression of the associated X protein (BAX) and TP53 and downregulated the expression of B cell lymphoma 2 (BCL-2) independent of Caspase 3. In contrast, lamprey PDCD10 suppressed apoptosis in response to cis-diaminedichloro-platinum (II) stimuli. Our phylogenetic and functional data not only provide a better understanding of the evolution of lamprey PDCD genes but also reveal the conservation of PDCD genes in apoptosis. Overall, our results provide a novel perspective on lamprey immune regulation mediated by the PDCD family.
Collapse
Affiliation(s)
- Xin Guan
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
4
|
Nazeri E, Gouran Savadkoohi M, Majidzadeh-A K, Esmaeili R. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets. Crit Rev Oncol Hematol 2018; 131:102-109. [PMID: 30293700 DOI: 10.1016/j.critrevonc.2018.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Sarcomas are known as a heterogeneous class of cancers arisen in the connective tissues and demonstrated various histological subtypes including both soft tissue and bone origin. Chondrosarcoma is one of the main types of bone sarcoma that shows a considerable deficiency in response to chemotherapy and radiotherapy. While conventional treatment based on surgery, chemo-and radiotherapy are used in this tumor, high rate of death especially among children and adolescents are reported. Due to high resistance to current conventional therapies in chondrosarcoma, there is an urgent requirement to recognize factors causing resistance and discover new strategies for optimal treatment. In the past decade, dysregulation of genes associated with tumor development and therapy resistance has been studied to find potential therapeutic targets to overcome resistance. In this review, clinical aspects of chondrosarcoma are summarized. Moreover, it gives a summary of gene dysregulation, mutation, histone modifications and non-coding RNAs associated with tumor development and therapeutic response modulation. Finally, the probable role of tumor microenvironment in chondrosarcoma drug resistance and targeted therapies as a promising molecular therapeutic approach are summarized.
Collapse
Affiliation(s)
- Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | | | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Kwak S, Lee S, Han E, Park S, Jeong M, Seo J, Park S, Sung G, Yoo J, Yoon H, Choi K. Serine/threonine kinase 31 promotes PDCD5‐mediated apoptosis in p53‐dependent human colon cancer cells. J Cell Physiol 2018; 234:2649-2658. [DOI: 10.1002/jcp.27079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sungmin Kwak
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Seung‐Hyun Lee
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Eun‐Jung Han
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Soo‐Yeon Park
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Mi‐Hyeon Jeong
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Jaesung Seo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Seung‐Ho Park
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Gi‐Jun Sung
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Jung‐Yoon Yoo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Ho‐Geun Yoon
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Kyung‐Chul Choi
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| |
Collapse
|
6
|
Chen C, Tian A, Zhao M, Ma X. Adenoviral delivery of VHL suppresses bone sarcoma cell growth through inhibition of Wnt/β-catenin signaling. Cancer Gene Ther 2018; 26:83-93. [PMID: 30140042 DOI: 10.1038/s41417-018-0041-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
The VHL tumor suppressor gene is frequently inactivated in several human tumors, including bone sarcomas. We previously identified that reduced expression of VHL protein is implicated in sarcomagenesis. However, the underlying biological functions of restored VHL protein expression have not been clearly elucidated in bone sarcomas. Here we initially constructed a recombinant adenovirus 5-VHL vector (Ad5-VHL) and evaluated its expression in bone sarcomas, and antitumor activity in vitro and in vivo. We found that the adenovirus-mediated increase of VHL significantly suppresses bone sarcoma cell growth, attributed to induction of apoptosis mediated by increased caspase-3 activity and modulated Bcl-2 protein family. This suppression effect involves inhibition of Wnt/β-catenin signaling and upregulation of GSK-3β. Moreover, Ad5-VHL showed a dramatic antitumor effect on a chondrosarcoma xenograft model. These findings establish that Ad5-VHL suppresses bone sarcoma cell growth by inhibiting Wnt/β-catenin signaling, and may be a novel target for gene-based therapy of bone sarcomas.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, P.R. China
| | - Aixian Tian
- Department of Orthopedics Institute, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, P.R. China
| | - Meng Zhao
- Department of Medical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Tianjin, 300060, P.R. China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, P.R. China.
| |
Collapse
|
7
|
Yuan F, Wang J, Zhang K, Li Z, Guan Z. Programmed cell death 5 transgenic mice attenuates adjuvant induced arthritis by 2 modifying the T lymphocytes balance. Biol Res 2017; 50:40. [PMID: 29228993 PMCID: PMC5725916 DOI: 10.1186/s40659-017-0145-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Programmed cell death 5 (PDCD5) is an apoptosis-related gene cloned from TF-1 cells whose primary biological functions are to promote apoptosis and immune regulation. The effects and mechanisms exerted by key mediators of arthritic inflammation remain unclear in PDCD5 transgenic (PDCD5 tg) mice. RESULTS In the current study, PDCD5 tg mice inhibited the progression of adjuvant-induced arthritis, specifically decreasing clinical signs and histological damage, compared with arthritis control mice. Additionally, the ratio of CD4+IFN-γ+ cells (Th1) and CD4+IL-17A+ cells (Th17), as well as the mRNA expression of the pro-inflammatory mediators IFN-γ, IL-6, IL-17A and TNF-α, were decreased in PDCD5 tg mice, while CD4+CD25+Foxp3+ regulatory T (Treg) cells and the anti-inflammatory mediators IL-4 and IL-10 were increased. Furthermore, PDCD5 tg mice demonstrated reduced serum levels of IFN-γ, IL-6, IL-17A and TNF-α and increased levels of IL-4. CONCLUSIONS Based on our data, PDCD5 exerts anti-inflammatory effects by modifying the T lymphocytes balance, inhibiting the production of pro-inflammatory mediators and promoting the secretion of anti-inflammatory cytokines, validating PDCD5 protein as a possible treatment for RA.
Collapse
Affiliation(s)
- Feng Yuan
- Arthritis Clinic & Research Center, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Junfeng Wang
- Department of Orthopaedics, Peking University International Hospital, Beijing, 102206, China
| | - Keshi Zhang
- Arthritis Clinic & Research Center, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhao Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhenpeng Guan
- Arthritis Clinic & Research Center, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
8
|
Cheng Q, Liu L, Fu Y, Zhang Y, Yang Y, Liu J. RhPDCD5 combined with dexamethasone increases antitumor activity in multiple myeloma partially via inhibiting the Wnt signalling pathway. Clin Exp Pharmacol Physiol 2017; 45:140-145. [PMID: 28945941 DOI: 10.1111/1440-1681.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is one of the most common hematological malignancies and characterized by the clonal accumulation of malignant plasma cells. Significant progress has been made in MM treatment recently, while MM still remains incurable. Our previous studies showed that the recombined human programmed cell death 5 (rhPDCD5) can promote MM apoptosis induced by dexamethasone (Dex). Here, we expanded the findings by showing that the rhPDCD5 alone could not induce an obvious growth inhibition of U266 cells (a MM cell line). Of note, with the combination of dexamethasone (Dex), the growth of MM cells was significantly inhibited and accompanied with the cell cycle arrest in G0/G1. For mechanism study, we found that the combination treatment of rhPDCD5 plus Dex downregulated the mRNA and protein expressions of Wnt effectors including β-catenin, β-catenin (Ser675), TCF4, survivin and c-Myc when compared to Dex only. Moreover, the activation of WNT pathway induced by LiCl can also be inhibited by this combination treatment. Taken together, our study demonstrated that the combination of rhPDCD5 and Dex can suppress the proliferation of multiple myeloma cells partially via inhibiting the WNT signalling pathway.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liping Liu
- Department of General Surgery, the Affiliated Zhuzhou Hospital, Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Yunfeng Fu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanan Zhang
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Yang
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Diao X, Wang J, Zhu H, He B. Overexpression of programmed cell death 5 in a mouse model of ovalbumin-induced allergic asthma. BMC Pulm Med 2016; 16:149. [PMID: 27846830 PMCID: PMC5109699 DOI: 10.1186/s12890-016-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Programmed cell death 5 (PDCD5) was first identified as an apoptosis-promoting protein and involved in some autoimmune diseases and inflammatory processes. Our previous study demonstrated greater expression of serum PDCD5 in asthmatic patients than controls. This study aimed to further explore the significance of PDCD5 in mice with induced allergic asthma. Methods We divided 16 female mice into 2 groups: control (n = 8) and allergen (ovalbumin, OVA)-challenged mice (n = 8). The modified ovalbumin inhalation method was used to generate the allergic asthma mouse model, and the impact of OVA was assessed by histology of lung tissue and morphometry. The number of cells in bronchoalveolar lavage fluid (BALF) was detected. Pulmonary function was measured by pressure sensors. PDCD5 and active caspase-3 levels were detected. Results The expression of PDCD5 was higher with OVA challenge than for controls (p < 0.05). PDCD5 level was correlated with number of inflammatory cells in BALF and lung function. Moreover, active caspase-3 level was increased in the OVA-challenged mice (p < 0.001) and correlated with PDCD5 level (p = 0.000). Conclusions These data demonstrate an association between level of PDCD5 and asthma severity and indicate that PDCD5 may play a role in allergic asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0317-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolin Diao
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Juan Wang
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Hong Zhu
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
10
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
11
|
Chen C, Zhao M, Tian A, Zhang X, Yao Z, Ma X. Aberrant activation of Wnt/β-catenin signaling drives proliferation of bone sarcoma cells. Oncotarget 2016; 6:17570-83. [PMID: 25999350 PMCID: PMC4627329 DOI: 10.18632/oncotarget.4100] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/30/2015] [Indexed: 12/25/2022] Open
Abstract
Bone sarcomas such as osteosarcoma and chondrosarcoma are frequently refractory to conventional chemotherapy and radiotherapy that exhibit poor prognosis. The Wnt signaling are evolutionarily conserved and implicated in cell proliferation and sarcomagenesis. However, the potential role of the Wnt signaling in bone sarcomas is still unclear. Here we demonstrate aberrant activation of Wnt/β-catenin signaling in bone sarcoma cells, involving an autocrine Wnt signaling loop with upregulation of specific Wnt ligands and receptors. Activation of Wnt/β-catenin signaling with Wnt3a or GSK-3β inhibitor drives the proliferation of bone sarcoma cells, whereas downregulation of activated Wnt signaling with dnTCF4 or siLEF1 suppresses bone sarcoma proliferation and induces cell cycle arrest. Taken together, our findings establish the evidence that aberrant activation of Wnt/β-catenin pathway involving an autocrine Wnt singaling drives the proliferation of bone sarcoma cells, and identify the autocrine activation of the Wnt/β-catenin signaling as a potential novel therapeutic target for bone sarcomas.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P. R. China
| | - Meng Zhao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Aixian Tian
- Department of Medical Laboratory, Tianjin Hospital, Tianjin, P. R. China
| | - Xiaolin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P. R. China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, P. R. China
| |
Collapse
|
12
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
13
|
Xiao J, Li G, Hu J, Qu L, Ma D, Chen Y. Anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced model of arthritis. Inflammation 2015; 38:70-8. [PMID: 25178696 PMCID: PMC4312386 DOI: 10.1007/s10753-014-0008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Programmed cell death 5 (PDCD5) was first identified as a gene upregulated in cells undergoing apoptosis. We recently demonstrated the inhibitory effect of PDCD5 on experimentally induced autoimmune encephalomyelitis. In this study, we investigated the anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced arthritis (CIA) model. We find that vaccination of collagen II (CII) induced CIA rats with rhPDCD5 significantly delayed the occurrence and reduced the severity of CIA rats. rhPDCD5 also restored the loss of Foxp3+ regulatory T (Treg) cells and decreased the population of Th1 and Th17 in CIA rats. Simultaneously, rhPDCD5 treatment suppressed the production of pro-inflammatory cytokines (interleukin (IL)-6, IL-17A, tumor necrosis factor-α (TNF-α), and interferon gamma (IFN-γ)) and increased the secretion of anti-inflammatory cytokines (transforming growth factor beta 1 (TGF-β1) and IL-10) in CIA rats. In addition, rhPDCD5 inhibited the ability of CII to induce proliferation of splenocytes and lymph node cells (LNCs) and promoted the CII-activated CD4+ cell apoptosis. These results of rhPDCD5-treated CIA rats were similar with those of recombinant human TNF-α receptor IgG Fc (rhTNFR:Fc). Thus, to our knowledge, we provide the first evidence that rhPDCD5 may be an efficient approach to diminishing exacerbated immune responses in CIA, indicating its therapeutic potential in the treatment of rheumatoid arthritis and other autoimmune diseases.
Collapse
Affiliation(s)
- Juan Xiao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing, 100191, China
| | | | | | | | | | | |
Collapse
|
14
|
Gao L, Ye X, Ma RQ, Cheng HY, Han HJ, Cui H, Wei LH, Chang XH. Low programmed cell death 5 expression is a prognostic factor in ovarian cancer. Chin Med J (Engl) 2015; 128:1084-90. [PMID: 25881604 PMCID: PMC4832950 DOI: 10.4103/0366-6999.155100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: Ovarian cancer is a leading gynecological malignancy. We investigated the prognostic value of programmed cell death 5 (PDCD5) in patients with ovarian cancer. Methods: Expression levels of PDCD5 mRNA and protein were examined in six ovarian cancer cell lines (SKOV3, CAOV3, ES2, OV1, 3AO, and HOC1A) and one normal ovarian epithelial cell line (T29) using reverse transcription polymerase chain reaction, Western blotting, and flow cytometry. After inducing PDCD5 induction in SKOV3 cells or treating this cell line with taxol or doxorubicin (either alone or combined), apoptosis was measured by Annexin V-FITC/propidium iodide staining. Correlations between PDCD5 protein expression and pathological features, histological grade, FIGO stage, effective cytoreductive surgery, and serum cancer antigen-125 values were evaluated in patients with ovarian cancer. Results: PDCD5 mRNA and protein expression were downregulated in ovarian cancer cells. Recombinant human PDCD5 increased doxorubicin-induced apoptosis in SKOV3 cells (15.96 ± 2.07%, vs. 3.17 ± 1.45% in controls). In patients with ovarian cancer, PDCD5 expression was inversely correlated with FIGO stage, pathological grade, and patient survival (P < 0.05, R = 0.7139 for survival). Conclusions: PDCD5 expression is negatively correlated with disease progression and stage in ovarian cancer. Therefore, measuring PDCD5 expression may be a good method of determining the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Hong Chang
- Gynecology Oncology Center, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
15
|
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation 2015; 12:117. [PMID: 26068104 PMCID: PMC4474568 DOI: 10.1186/s12974-015-0338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background In multiple sclerosis (MS) and its widely used animal model, experimental autoimmune encephalomyelitis (EAE), autoreactive T cells contribute importantly to central nervous system (CNS) tissue damage and disease progression. Promoting apoptosis of autoreactive T cells may help eliminate cells responsible for inflammation and may delay disease progression and decrease the frequency and severity of relapse. Programmed cell death 5 (PDCD5) is a protein known to accelerate apoptosis in response to various stimuli. However, the effects of recombinant human PDCD5 (rhPDCD5) on encephalitogenic T cell-mediated inflammation remain unknown. Methods We examined the effects of intraperitoneal injection of rhPDCD5 (10 mg/kg) on EAE both prophylactically (started on day 0 post-EAE induction) and therapeutically (started on the onset of EAE disease at day 8), with both of the treatment paradigms being given every other day until day 25. Repeated measures two-way analysis of variance was used for statistical analysis. Results We showed that the anti-inflammatory effects of rhPDCD5 were due to a decrease in Th1/Th17 cell frequency, accompanied by a reduction of proinflammatory cytokines, including IFN-γ and IL-17A, and were observed in both prophylactic and therapeutic regimens of rhPDCD5 treatment in EAE mice. Moreover, rhPDCD5-induced apoptosis of myelin-reactive CD4+ T cells, along with the upregulation of Bax and downregulation of Bcl-2, and with activated caspase 3. Conclusions Our data demonstrate that rhPDCD5 ameliorates the autoimmune CNS disease by inhibiting Th1/Th17 differentiation and inducing apoptosis of predominantly pathogenic T cells. This study provides a novel mechanism to explain the effects of rhPDCD5 on neural inflammation. The work represents a translational demonstration that rhPDCD5 has prophylactic and therapeutic properties in a model of multiple sclerosis.
Collapse
Affiliation(s)
- Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Wenwei Liu
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China.
| | - Wenbin Deng
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
16
|
YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1060-72. [DOI: 10.1016/j.bbamcr.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 01/13/2023]
|
17
|
Yan Z, Jiang J, Li F, Yang W, Xie G, Zhou C, Xia S, Cheng Y. Adenovirus-mediated LRIG1 expression enhances the chemosensitivity of bladder cancer cells to cisplatin. Oncol Rep 2015; 33:1791-8. [PMID: 25695283 DOI: 10.3892/or.2015.3807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 11/05/2022] Open
Abstract
Cisplatin (cis-diaminodichloroplatinum, CDDP) is one of the most effective chemotherapeutic agents that has been widely used in the treatment of many malignancies, including muscle invasive bladder cancer. However, development of CDDP resistance in cancer cells is a major obstacle to the effective treatment of bladder cancer. Therefore, the development of chemosensitizers to overcome the acquired resistance to chemotherapeutic agents is crucial. Previous studies have confirmed that the epidermal growth factor receptor (EGFR) and its signaling pathways are important in the chemoresistance of cancer cells against CDDP‑induced cell apoptosis. In a preliminary study we showed that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is the natural ligand of EGFR, and that the extracellular leucine-rich repeat (LRR) domain and immunoglobulin-like domains of LRIG1 were able to bind to the extracellular domain of EGFR, resulting in the downregulation of EGFR expression. Based on these findings, we hypothesized that LRIG1 may enhance the chemosensitivity of bladder cancer cells to CDDP. In the present study, LRIG1 was overexpressed by the adenovirus vector to determine the effect of LRIG1 on chemosensitivity in the T24 bladder cancer cell line and explored the possible mechanisms. The results showed that CDDP inhibited the growth of the T24 cell line and induced activation of EGFR. Overexpression of LRIG1 increased the inhibitory effect of CDDP on the T24 cell line, which may be associated with inactivation of the EGFR signaling pathway, followed by the decrease of Bcl-2 expression and a concomitantly induced expression of Bax. Based on these results, we concluded that the upregulation of LRIG1 expression inhibited the EGFR signaling pathway, activated the mitochondrial pathway of apoptosis and eventually increased the sensitivity of bladder cancer cells to CDDP.
Collapse
Affiliation(s)
- Zejun Yan
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Junhui Jiang
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weiming Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guohai Xie
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Cheng Zhou
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Shujie Xia
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Park SY, Choi HK, Choi Y, Kwak S, Choi KC, Yoon HG. Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress. Cancer Lett 2014; 357:419-427. [PMID: 25499082 DOI: 10.1016/j.canlet.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/27/2022]
Abstract
Programmed cell death 5 (PDCD5) positively regulates p53-mediated apoptosis and rapidly accumulates upon DNA damage. However, the underlying mechanism of PDCD5 upregulation during the DNA damage response remains unknown. Here, we found that OTU deubiquitinase 5 (OTUD5) was bound to PDCD5 in response to etoposide treatment and increased the stability of PDCD5 by mediating deubiquitination of PDCD5 at Lys-97/98. Overexpression of OTUD5 efficiently enhanced the activation of both PDCD5 and p53. Conversely, PDCD5 knockdown greatly attenuated the effect of OTUD5 on p53 activation. In addition, when OTUD5 was depleted, PDCD5 failed to facilitate p53 activation, demonstrating an essential role for the PDCD5-OTUD5 network in p53 activation. Importantly, we found that OTUD5-dependent PDCD5 stabilization was required for sequential activation of p53 in response to genotoxic stress. The sequential activation of PDCD5 and p53 was abrogated by knockdown of OTUD5. Finally, impairment of the genotoxic stress response upon PDCD5 ablation was substantially rescued by reintroducing PDCD5(WT) but not PDCD5(E94D) (defective for OTUD5 interaction) or PDCD5(E16D) (defective for p53 interaction). Together, our findings have uncovered an apoptotic signaling cascade linking PDCD5, OTUD5, and p53 during genotoxic stress responses.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo-Kyoung Choi
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Youngsok Choi
- Fertility Center of CHA General Hospital, CHA Research Institute, CHA University, Seoul, Korea
| | - Sungmin Kwak
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, Brain Korea 21 Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
XU SHINING, SUI GANG, YUAN LEI, ZOU ZHIQIANG. Expression of programmed cell death 5 protein inhibits progression of lung carcinoma in vitro and in vivo via the mitochondrial apoptotic pathway. Mol Med Rep 2014; 10:2059-64. [DOI: 10.3892/mmr.2014.2454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
|
20
|
|
21
|
Chen Y, Zou Z, Xu A, Liu Y, Pan H, Jin L. Serum programmed cell death protein 5 (PDCD5) levels is upregulated in liver diseases. J Immunoassay Immunochem 2013; 34:294-304. [PMID: 23656249 DOI: 10.1080/15321819.2012.731461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular protein molecules are detected in the blood following release from damaged cells. PDCD5 is widely expressed in most types of normal human tissue and is unregulated in cells undergoing apoptosis. It is therefore hypothesized that release of PDCD5 into the circulation might be a specific marker of apoptosis. In this study, a sandwich ELISA was developed for quantification of soluble PDCD5 protein and used to investigate serum PDCD5 levels in liver diseases. The highest levels of PDCD5 were detected in acute icteric hepatitis (AIH) patients compared with normal subjects and other detected liver diseases, such as chronic active hepatitis B (CAHB), chronic persistent hepatitis B (CPHB) and and liver cirrhosis (LC). Increased PDCD5 levels correlated well with ALT and AST in AIH and CAHB patients. In patients with CPHB, increased PDCD5 levels correlated well with AST, TBI, DBIL, and IBIL. In LC patients, PDCD5 levels correlated well with AST/ALT and DBIL. More importantly, increased PDCD5 levels were also observed in patients with normal ALT or AST levels. These data demonstrate a correlation between increased levels of PDCD5 in serum and liver disease progression and indicate the potential utility of serum PDCD5 as a biomarker for monitoring liver injury.
Collapse
Affiliation(s)
- Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
22
|
Wang L, Wang C, Su B, Song Q, Zhang Y, Luo Y, Li Q, Tan W, Ma D, Wang L. Recombinant human PDCD5 protein enhances chemosensitivity of breast cancer in vitro and in vivo. Biochem Cell Biol 2013; 91:526-31. [PMID: 24219296 DOI: 10.1139/bcb-2013-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance to paclitaxel is common for treatment of breast cancer. Programmed cell death 5 (PDCD5) accelerates apoptosis in different cell types in response to various stimuli; moreover PDCD5 has been shown to be down-regulated in many tumors. In this study, protein levels of PDCD5 were found to be up-regulated in paclitaxel-treated MDA-MB-231 breast cancer cells. MTT, CCK-8, and clonogenic assays have shown that recombinant human PDCD5 (rhPDCD5) alone could not produce an obvious growth inhibition. However, upon paclitaxel triggering apoptosis, rhPDCD5 protein potentiated chemotherapeutic drugs-induced growth arrest in MDA-MB-231, SK-BR-3, and ZR-75-1 breast cancer cells. In vivo, we use a human breast cancer xenograft model to study. We found that rhPDCD5 dramatically improves the antitumor effects of paclitaxel treatment by intraperitoneal administration. These data suggest that rhPDCD5 has the potential to use as a therapeutic agent to enhance the paclitaxel sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Lanlan Wang
- a Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiao J, Liu C, Li G, Peng S, Hu J, Qu L, Lv P, Zhang Y, Ma D, Chen Y. PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. J Autoimmun 2013; 47:34-44. [PMID: 24012345 DOI: 10.1016/j.jaut.2013.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Maintenance of FOXP3 protein expression is crucial for differentiation and maturation of regulatory T (Treg) cells, which play important roles in immune homeostasis and immune tolerance. We demonstrate here that PDCD5 interacts with FOXP3, increases acetylation of FOXP3 in synergy with Tip60 and enhances the repressive function of FOXP3. In PDCD5 transgenic (PDCD5tg) mice, overexpression of PDCD5 enhanced the level of FOXP3 protein and percentage of CD4(+)CD25(+)FOXP3(+) cells. Naïve CD4(+) T cells from PDCD5tg mice were more sensitive to TGF-β-induced Treg polarization and expansion. These induced Tregs retained normal suppressive function in vitro. Severity of experimentally-induced autoimmune encephalomyelitis (EAE) in PDCD5tg mice was significantly reduced relative to that of wild-type mice. The beneficial effect of PDCD5 likely resulted from increases of Treg cell frequency, accompanied by a reduction of the predominant pathogenic Th17/Th1 response. Activation-induced cell death enhanced by PDCD5 was also linked to this process. This is the first report revealing that PDCD5 activity in T cells suppresses autoimmunity by modulating Tregs. This study suggests that PDCD5 serves as a guardian of immunological functions and that the PDCD5-FOXP3-Treg axis may be a therapeutic target for autoimmunity.
Collapse
Affiliation(s)
- Juan Xiao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen CH, Jiang Z, Yan JH, Yang L, Wang K, Chen YY, Han JY, Zhang JH, Zhou CM. The involvement of programmed cell death 5 (PDCD5) in the regulation of apoptosis in cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2013; 19:566-76. [PMID: 23638963 DOI: 10.1111/cns.12114] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/25/2013] [Accepted: 03/21/2013] [Indexed: 01/06/2023] Open
Abstract
AIMS Programmed Cell Death 5 (PDCD5) is a protein that accelerates apoptosis in different types of cells in response to various stimuli and is down-regulated in many cancer tissues. We hypothesized in this study that down-regulating PDCD5 can protect the brain from ischemic damage by inhibiting PDCD5-induced apoptotic pathway. METHODS One hundred and sixty male Sprague-Dawley rats were randomly assigned to five groups: Sham surgery (n = 25), MCAO (n = 45), MCAO+rhPDCD5 (RhPDCD5) (n = 30), MCAO+control siRNA (n = 30), and MCAO+PDCD5 siRNA (n = 30). At 24 h following MCAO, immunohistochemistry and Western blot were performed. RESULTS PDCD5 siRNA reduced the infarct volume, improved neurological deficits, improved cerebral blood flow (CBF), and reduced Evans blue extravasation. Meanwhile, over-expression of PDCD5 protein with recombinant human PDCD5 (rhPDCD5) had an opposite effect. Immunohistochemistry and Western blot demonstrated PDCD5 siRNA decreased the expressions of key proapoptotic proteins such as p53, Bax/Bcl-2, and cleaved caspase-3 in the penumbra areas, whereas rhPDCD5 increased cell apoptosis. Double fluorescence labeling showed the positive immunoreactive materials of PDCD5 were partly colocalized with MAP2, GFAP, CD34, p53, and caspase-3 in the penumbra areas in brain. CONCLUSIONS PDCD5-induced apoptosis and over-expression of PDCD5 are harmful to the ischemic neurons in vivo. Meanwhile, the inhibition of PDCD5 may be protective via reducing the apoptotic-related protein such as p53, Bax, and caspase-3. This observation may have potential for the treatment of ischemic cerebral stroke.
Collapse
Affiliation(s)
- Chun-Hua Chen
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu L, Hu J, Zhao Y, Hu J, Xiao J, Wang Y, Ma D, Chen Y. PDCD5 interacts with p53 and functions as a positive regulator in the p53 pathway. Apoptosis 2012; 17:1235-45. [DOI: 10.1007/s10495-012-0754-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Xu HY, Chen ZW, Pan YM, Fan L, Guan J, Lu YY. Transfection of PDCD5 effect on the biological behavior of tumor cells and sensitized gastric cancer cells to cisplatin-induced apoptosis. Dig Dis Sci 2012; 57:1847-56. [PMID: 22359193 DOI: 10.1007/s10620-012-2090-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/06/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND Programmed cell death 5 (PDCD5) expression is reduced in various human tumor cells, and the protein concentration and nuclear translocation of PDCD5 is also observed during tumor cell apoptosis. AIMS The purpose of this study was to investigate the differential expression of PDCD5 in six gastric cell lines, and to explore the changes of biological behavior mechanism underlying enhanced apoptosis-inducing effects of cisplatin by PDCD5 over-expression on gastric cancer BGC823 cells. METHODS RT-PCR and real-time PCR were used to determine PDCD5 expression. BGC823/PDCD5 cells were assessed the cellular proliferating ability by MTT assay, soft agar cloning experiments and tumorigenicity in nude mice experiments in vivo. The effects of cisplatin in combination with PDCD5 on the proliferation and apoptosis were measured by MTT, Annexin-V-FITC/PI dual labeling and cell cycle analysis, respectively. Immunofluorescence was used to detect co-localization of p53 and PDCD5 protein to explore the mechanism underlying the synergistic therapeutic effect of PDCD5 with cisplatin (5 μg/ml for 24 h). RESULTS PDCD5 had the highest expression level in the GES1 cell among other cell lines. The growths of BGC823 cells transfected with PDCD5 for six (6th) or 17 (17th) days were both slower than that of BGC823 and BGC823/Neo (P < 0.01). The stable transfection of PDCD5 demonstrated G2/M cell cycle arrest, increased apoptosis and nuclear translocation of PDCD5 and p53 after cisplatin treatment. CONCLUSIONS Stable transfection of the PDCD5 gene can inhibit the growth of the BGC823 cell line and notably improve apoptosis-inducing effects of cisplatin, indicating a novel strategy for better chemotherapeutic effects on gastric cancer.
Collapse
Affiliation(s)
- Hui-Yu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Li H, Zhang X, Song X, Zhu F, Wang Q, Guo C, Liu C, Shi Y, Ma C, Wang X, Zhang L. PDCD5 promotes cisplatin-induced apoptosis of glioma cells via activating mitochondrial apoptotic pathway. Cancer Biol Ther 2012; 13:822-30. [PMID: 22688731 DOI: 10.4161/cbt.20565] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioma is one of the most common primary brain tumors. Despite surgical resection, radiotherapy, and chemotherapy, the prognosis of patients with malignant glioma remains poor. Programmed cell death 5 (PDCD5) is a newly described pro-apoptotic protein. Our previous study showed that PDCD5 downregulation in gliomas was associated with higher pathological grade. Here, we investigated the effect of PDCD5 on chemosensitivity of glioma cells and its mechanism. We demonstrated that overexpression or knockdown of PDCD5 had no significant effect on the proliferation of glioma cell lines (U87, U251, and T98G) in the absence of chemotherapeutic agents. However, PDCD5 overexpression effectively sensitized U87 cells to chemotherapeutic drugs (cisplatin, carboplatin, and vincristine) in a concentration-dependent manner, while its knockdown resulted in decreased chemosensitivity in U251, T98G, and U87 cells. Importantly, expression of PDCD5 also markedly inhibited tumor cell proliferation and colony formation in the presence of low doses of cisplatin. Furthermore, we found that PDCD5 expression promoted cisplatin-induced apoptosis, increased markedly the activation of caspase-3 and caspase-9, and decreased significantly the ratio of Bcl-2/Bax proteins, but had no effect on the activation of caspase-8. Taken together, our findings indicate that PDCD5 promotes chemosensitivity by activating mitochondria-related apoptotic pathway, and that the combination of PDCD5 and chemotherapeutic drugs such as cisplatin, is expected to be an effective therapeutic strategy for the malignant glioma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhuge C, Chang Y, Li Y, Chen Y, Lei J. PDCD5-regulated cell fate decision after ultraviolet-irradiation-induced DNA damage. Biophys J 2012; 101:2582-91. [PMID: 22261045 DOI: 10.1016/j.bpj.2011.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/23/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022] Open
Abstract
Programmed cell death 5 (PDCD5) is a human apoptosis-related molecule that is involved in both the cytoplasmic caspase-3 activity pathway (by regulating Bax translocation from cytoplasm to mitochondria) and the nuclear pathway (by interacting with Tip60). In this study, we developed a mathematical model of the PDCD5-regulated switching of the cell response from DNA repair to apoptosis after ultraviolet irradiation-induced DNA damage. We established the model by combining several hypotheses with experimental observations. Our simulations indicate that the ultimate cell response to DNA damage is dependent on a signal threshold mechanism, and the PDCD5 promotion of Bax translocation plays an essential role in PDCD5-regulated cell apoptosis. Furthermore, the model simulations revealed that PDCD5 nuclear translocation can attenuate cell apoptosis, and PDCD5 interactions with Tip60 can accelerate DNA damage-induced apoptosis, but the final cell fate decision is insensitive to the PDCD5-Tip60 interaction. These results are consistent with experimental observations. The effect of recombinant human PDCD5 was also investigated and shown to sensitize cells to DNA damage by promoting caspase-3 activity.
Collapse
Affiliation(s)
- Changjing Zhuge
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
The anti-tumor role and mechanism of integrated and truncated PDCD5 proteins in osteosarcoma cells. Cell Signal 2012; 24:1713-21. [PMID: 22560879 DOI: 10.1016/j.cellsig.2012.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is a high-grade malignant bone tumor. In these studies, the cell apoptosis-related gene, programmed cell death 5 gene (PDCD5), and various fragments of it, were overexpressed in the OS cell line, MG-63. The effects of PDCD5 on MG-63 cells both in vivo and in vitro were then identified. Our results indicate that PDCD5 can induce apoptosis and G(2) phase arrest in MG-63 cells. Moreover, expression of PDCD5 in established xenografted tumors was associated with a decrease in tumor size and weight. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors that did not express PDCD5. To analyze the signaling pathway involved, western blotting was performed. In these assays, PDCD5 was found to inhibit the Ras/Raf/MEK/ERK signaling pathway, leading to inhibition of cyclin B and CDK1. In addition, down-regulation of ERK resulted in activation of caspase 3 and caspase 9. These results are consistent with the G(2) phase arrest observed with overexpression of PDCD5. However, a G(1) phase arrest was not observed. Therefore, proteins associated with the G(1) phase of the cell cycle were overexpressed in combination with PDCD5 overexpression. Overall, these studies demonstrate the anti-tumor activity of PDCD5 in the OS cell line, MG-63, and provide insight into relevant mechanisms that may lead to novel treatments for OS.
Collapse
|
30
|
Zhou W, Fu XQ, Liu J, Yu HG. RNAi knockdown of the Akt1 gene increases the chemosensitivity of gastric cancer cells to cisplatin both in vitro and in vivo. ACTA ACUST UNITED AC 2012; 176:13-21. [PMID: 22387880 DOI: 10.1016/j.regpep.2012.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 01/12/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
AIM To examine the in vitro and in vivo effects of a combined treatment of cis-d iamminedichloroplatinum(II) (cisplatin) with downregulation of Akt1 expression in gastric cancer cells. MATERIALS AND METHODS Lentivirus-mediated RNA interference (RNAi) was used to silence the Akt1 gene. pGCSIL-Akt1 small hairpin RNA (shRNA) was stably transfected into gastric cancer cells (SGC7901 and BGC823). Next, the effects of Akt1 downregulation on the growth and apoptosis of SGC7901 (BGC823) cells in the presence or absence of cisplatin were investigated by real-time polymerase chain reaction (RT-PCR), Western blot analysis, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-d-iphenyltetrazolium bromide) assay, Hoechst assay, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). Finally, the effects of downregulation of Akt1 expression on the sensitivity of SGC7901 cells in a tumor xenograft model of cisplatin were also determined. RESULT Akt1 silencing reduced gastric cancer proliferation and increased cell apoptosis both in vitro and in vivo. The chemosensitivity of SGC7901 (BGC823) cells to cisplatin increased significantly following the downregulation of Akt1 expression, which might be associated with the inactivation of the PI3K/Akt1 signaling pathway, followed by the induced expression of the pro-apoptotic protein Bax and a concomitant decrease of Bcl-2 expression. CONCLUSION This study confirmed that downregulation of Akt1 reduced chemotherapy tolerance of gastric cancer cells to cisplatin treatment. Thus, Akt1 silencing and cisplatin appear to be an effective combination treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | | | | | | |
Collapse
|
31
|
Correlation of PDCD5 and apoptosis in hair cells and spiral ganglion neurons of different age of C57BL/6J mice. ACTA ACUST UNITED AC 2012; 32:113-118. [PMID: 22282256 DOI: 10.1007/s11596-012-0020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Indexed: 12/17/2022]
Abstract
This study examined the expression pattern of programmed cell death 5 (PDCD5) in cochlear hair cells and spiral ganglion neurons (SGNs) and its association with age-related hearing loss in mice. Sixty C57BL/6J (C57) mice at different ages were divided into four groups (3, 6, 9 or 12 months). PDCD5 expression was detected by using immunohistochemistry, real-time PCR and Western blot. Morphological change of the cochleae was also evaluated by using immunoassay. The results showed that the expression of PDCD5 had a gradual increase with ageing in both protein and RNA levels in C57 mice, as well as gradually increased apoptosis of cochlear hair cells and SGNs. In addition, we also found that caspase-3 activity was enhanced and its expression was enhanced with ageing. It is implied that overexpression of PDCD5 causes the increase in caspase-3 activity and the subsequent increase of apoptosis in cochlear hair cells and SGNs, and thereby plays a role in the pathogenesis of presbycusis. Thus, PDCD5 may be a new target site for the treatment and prevention of age-related hearing loss.
Collapse
|
32
|
Chen C, Zhou H, Liu X, Liu Z, Ma Q. Reduced expression of von Hippel-Lindau protein correlates with decreased apoptosis and high chondrosarcoma grade. J Bone Joint Surg Am 2011; 93:1833-40. [PMID: 22005870 DOI: 10.2106/jbjs.i.01553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Mutations and loss of the von Hippel-Lindau (VHL) tumor suppressor gene are associated with most renal cancers as well as several other types of human tumors, but the potential role of the VHL protein (pVHL) in patients with chondrosarcoma has not been characterized. The purpose of the present study was to investigate the expression profiles of pVHL in chondrosarcoma and its association with clinicopathologic parameters, Bax expression, the apoptosis index, and overall survival of patients with chondrosarcoma. METHODS The messenger RNA (mRNA) and protein levels of VHL in fresh specimens from eight chondrosarcomas were studied with use of real-time polymerase chain reaction and Western blot, respectively. The protein expression of VHL and Bax was investigated by means of immunohistochemical analysis of paraffin-embedded clinical specimens from seventeen benign cartilage tumors and thirty-four chondrosarcomas. The apoptosis index in chondrosarcoma was examined by means of the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay. Curves for overall survival were drawn according to the Kaplan-Meier method, and differences were analyzed with the log-rank test. The association of pVHL expression with the clinicopathologic parameters, Bax expression, apoptosis index, and overall survival for patients with chondrosarcoma was also analyzed. RESULTS Levels of VHL protein (p = 0.005) and mRNA (p = 0.008) were significantly reduced in chondrosarcoma tissues as compared with the paired adjacent normal tissues. Immunohistochemical analysis showed decreased pVHL in a significantly higher proportion of chondrosarcomas (64.7%) than benign cartilage tumors (29.4%). pVHL expression was positively correlated with Bax expression and the apoptosis index in chondrosarcoma. Longitudinal studies of a cohort of patients with chondrosarcomas showed that decreased pVHL expression significantly correlated with increased tumor grade (p = 0.026) but was not independently predictive of overall survival. CONCLUSIONS Reduced pVHL expression was associated with decreased apoptosis and increasing chondrosarcoma grade, but the relationship between these findings and chondrosarcoma pathogenesis requires further study.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, China.
| | | | | | | | | |
Collapse
|
33
|
Chen C, Ma Q, Ma X, Liu Z, Liu X. Association of Elevated HIF-2α Levels with Low Beclin 1 Expression and Poor Prognosis in Patients with Chondrosarcoma. Ann Surg Oncol 2011; 18:2364-72. [DOI: 10.1245/s10434-011-1587-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Indexed: 11/18/2022]
|
34
|
Chen C, Zhou H, Wei F, Jiang L, Liu X, Liu Z, Ma Q. Increased levels of hypoxia-inducible factor-1α are associated with Bcl-xL expression, tumor apoptosis, and clinical outcome in chondrosarcoma. J Orthop Res 2011; 29:143-51. [PMID: 20661931 DOI: 10.1002/jor.21193] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α is a key nuclear transcription factor that regulates the cellular response to hypoxia, and is important for solid tumor growth and survival. However, the underlying role of HIF-1α in human chondrosarcoma has not been well characterized. This study aims to investigate the expression patterns of HIF-1α in chondrosarcoma, and its association with clinicopathologic features, Bcl-xL expression, apoptosis index (AI), and overall survival of patients with chondrosarcoma. Our results shown that the protein levels of HIF-1α were increased, and the mRNA and protein levels of Bcl-xL were also increased in SW1353 cells under hypoxic conditions. In eight patients with chondrosarcoma, increased expression of HIF-1α and Bcl-xL was detected in chondrosarcoma tissues compared with the paired adjacent normal tissues. Of 34 archival specimens of chondrosarcomas, 20 (58.8%) showed high HIF-1α protein expression as compared to benign cartilage tumors. Increased HIF-1α expression was correlated with a higher pathological grade and MSTS stage of chondrosarcoma. Moreover, HIF-1α expression was significantly associated with Bcl-xL expression and AI. More significantly, the survival rate of patients with HIF-1α high tumors was significantly lower than that of patients with HIF-1α low tumors. These findings suggest that increased HIF-1α levels mediated up-regulation of Bcl-xL play a prominent role in evasion of apoptosis and tumor progression, and can be predictive for the prognosis in human chondrosarcoma.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Orthopaedic Surgery, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Chondrosarcomas are malignant cartilage tumours. They are poorly responsive to chemotherapy and radiotherapy. Treatment is usually limited to surgical resection; however, survival of patients with high-grade chondrosarcoma is poor, even with wide surgical resection. Induction of apoptosis in chondrosarcoma cells, either directly or by enhancement of the response to chemotherapeutic drugs and radiation, may be a route by which outcome can be improved. In this article, we review potential molecular targets that regulate chondrocyte apoptosis and discuss the experimental evidence for their utility.
Collapse
Affiliation(s)
- Nuor Jamil
- Osteoarticular Research Group, Centre for Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
36
|
Yin A, Jiang Y, Zhang X, Zhao J, Luo H. Transfection of PDCD5 sensitizes colorectal cancer cells to cisplatin-induced apoptosis in vitro and in vivo. Eur J Pharmacol 2010; 649:120-6. [DOI: 10.1016/j.ejphar.2010.09.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 11/28/2022]
|
37
|
Chen C, Zhou H, Xu L, Liu X, Liu Z, Ma D, Chen Y, Ma Q. Prognostic significance of downregulated expression of programmed cell death 5 in chondrosarcoma. J Surg Oncol 2010; 102:838-43. [DOI: 10.1002/jso.21730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|