1
|
Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Li S, Wang Z, Xia X. Ben-JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:4495-4504. [PMID: 38676657 DOI: 10.1002/ps.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jia-Si Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ren-Ke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Zhaowei Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiaoling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Cheng W, Ren Y, Yu C, Zhou T, Zhang Y, Lu L, Liu Y, Xu D. CyHV-2 infection triggers mitochondrial-mediated apoptosis in GiCF cells by upregulating the pro-apoptotic gene ccBAX. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109400. [PMID: 38253137 DOI: 10.1016/j.fsi.2024.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Apoptosis is a physiological cell death phenomenon, representing one of the fundamental physiological mechanisms for maintaining homeostasis in living organisms. Previous studies have observed typical apoptotic features in Carassius auratus gibelio caudal fin cell (GiCF) infected with Cyprinid herpesvirus 2 (CyHV-2), and found a significant up-regulation of ccBAX expression in these infected cells. However, the specific apoptotic mechanism involved remains unclear. In this study, we utilized the GiCF cell line to investigate the apoptotic mechanism during CyHV-2 infection. Immunofluorescence staining revealed translocation of ccBAX into mitochondria upon CyHV-2 infection. Flow cytometry analysis demonstrated that overexpression of ccBAX expedited virus-induced apoptosis, characterized by heightened mitochondrial depolarization, increased transcriptional levels of Cytochrome c (Cyto c) in both the cytoplasm and mitochondria, and augmented Caspase 3/7 enzyme activity. Bax inhibitor peptide V5 (BIP-V5), an inhibitor interfering with the function of Bax proteins, inhibited Bax-mediated apoptotic events through the mitochondrial pathway and attenuated apoptosis induced by CyHV-2. In this study, it was identified for the first time that CyHV-2 induces apoptosis via the mitochondrial pathway in GiCF cells, bridging an important gap in our understanding regarding cell death mechanisms induced by herpesvirus infections in fish species. These findings provide a theoretical basis for comprehending viral apoptotic regulation mechanisms and the prevention and control of cellular pathologies caused by CyHV-2 infection.
Collapse
Affiliation(s)
- Wenjie Cheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yilin Ren
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Apoptosis or Antiapoptosis? Interrupted Regulated Cell Death of Host Cells by Ascovirus Infection In Vitro. mBio 2023; 14:e0311922. [PMID: 36744941 PMCID: PMC9973268 DOI: 10.1128/mbio.03119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ascoviruses are insect-specific viruses thought to utilize the cellular apoptotic processes of host larvae to produce numerous virion-containing vesicles. In this study, we first determined the biochemical characteristics of ascovirus-infected, in vitro-cultured insect cells and the possible antiapoptotic capacity of ascovirus-infected insect cells. The results indicated that the ascovirus infection in the first 24 h was different from the infection from 48 h to the later infection stages. In the early infection stage, the Spodoptera exigua host cells had high membrane permeability and cleaved gasdermin D (GSDMD) but uncleaved Casp-6 (SeCasp-6). In contrast, the later infection stage had no such increased membrane permeability and had cleaved SeCasp-6. Four different chemicals were used to induce apoptosis at different stages of ascovirus infection: hydrogen peroxide (H2O2) and actinomycin D (ActD) had similar effects on the ascovirus-infected cells, whereas cMYC inhibitors and tumor necrosis factor alpha (TNF-α) plus SM-164 apoptosis inducers (T/S) had similar effects on infected cells. The former two inducers inhibited viral DNA replication in most situations, while the latter two inducers inhibited viral DNA replication in the early stage of infection but promoted viral DNA replication in the later infection stage. Furthermore, immunoblotting assays verified that T/S treatment could increase the expression levels of viral major capsid protein (MCP) and the host inhibitor of apoptosis protein (SeIAP). Coimmunoprecipitation assays revealed interaction between SeIAP and SeCasps, but this interaction was disturbed in ascovirus-infected cells. This study details the in vitro infection process of ascovirus, indicating the utilization of pyroptosis for antiapoptosis cytopathology. IMPORTANCE Clarifying the relationship between different types of viral infections and host regulation of cell death (RCD) can provide insights into the interaction between viruses and host cells. Ascoviruses are insect-specific viruses with apoptosis-utilizing-like infection cytopathology. However, RCD does not only include apoptosis, and while in our previous transmission electron microscopic observations, ascovirus-infected cells did not show typical apoptotic characteristics (unpublished data), in this study, they did show increased membrane permeability. These results indicate that the cytopathology of ascovirus infection is a complex process in which the virus manipulates host RCD. The RCD of insect cells is quite different from that of mammals, and studies on the former are many fewer than those on the latter, especially in the case of RCD in lepidopteran insects. Our results will lay a foundation for understanding the RCD of lepidopteran insects and its function in the process of insect virus infection.
Collapse
|
4
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
5
|
Wang Y, Han H, Zhu K, Xu S, Han C, Jiang Y, Wei S, Qin Q. Functional Analysis of the Cathepsin D Gene Response to SGIV Infection in the Orange-Spotted Grouper, Epinephelus coioides. Viruses 2022; 14:v14081680. [PMID: 36016302 PMCID: PMC9413388 DOI: 10.3390/v14081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lysosomal aspartic protease Cathepsin D (CD) is a key regulator and signaling molecule in various biological processes including activation and degradation of intracellular proteins, the antigen process and programmed cell death. However, the function of fish CD in virus infection remains largely unknown. (2) Methods: The functions of the CD gene response to SGIV infection was determined with light microscopy, reverse transcription quantitative PCR, Western blot and flow cytometry. (3) Results: In this study, Ec-Cathepsin D (Ec-CD) was cloned and identified from the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of Ec-CD consisted of 1191 nucleotides encoding a 396 amino acid protein with a predicted molecular mass of 43.17 kDa. Ec-CD possessed typical CD structural features including an N-terminal signal peptide, a propeptide region and a mature domain including two glycosylation sites and two active sites, which were conserved in other CD sequences. Ec-CD was predominantly expressed in the spleen and kidneys of healthy groupers. A subcellular localization assay indicated that Ec-CD was mainly distributed in the cytoplasm. Ec-CD expression was suppressed by SGIV stimulation and Ec-CD-overexpressing inhibited SGIV replication, SGIV-induced apoptosis, caspase 3/8/9 activity and the activation of reporter gene p53 and activating protein-1 (AP-1) in vitro. Simultaneously, Ec-CD overexpression obviously restrained the activated mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, Ec-CD overexpression negatively regulated the transcription level of pro-inflammatory cytokines and activation of the NF-κB promotor. (4) Conclusions: Our findings revealed that the Ec-CD possibly served a function during SGIV infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Honglin Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Suifeng Xu
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Chengzong Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Yunxiang Jiang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Shina Wei
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| | - Qiwei Qin
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 528478, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| |
Collapse
|
6
|
Infectious Spleen and Kidney Necrosis Virus (ISKNV) Triggers Mitochondria-Mediated Dynamic Interaction Signals via an Imbalance of Bax/Bak over Bcl-2/Bcl-xL in Fish Cells. Viruses 2022; 14:v14050922. [PMID: 35632664 PMCID: PMC9144193 DOI: 10.3390/v14050922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
The molecular pathogenesis of infectious spleen and kidney necrosis virus (ISKNV) infections is important but has rarely been studied in connection to host organelle behavior. In the present study, we demonstrated that ISKNV can induce host cell death via a pro-apoptotic Bcl-2 and anti-apoptotic Bcl-2 family member imbalance in mitochondrial membrane potential (MMP or ΔΨm) regulation in GF-1 cells. The results of our study on ISKNV infection showed that it can induce host cell death by up to 80% at day 5 post-infection. Subsequently, in an apoptotic assay, ISKNV infection was seen to induce an increase in Annexin-V-positive signals by 20% and in propidium iodide (PI) staining-positive signals by up to 30% at day 5 (D5) in GF-1 cells. Then, through our studies on the mechanism of cell death in mitochondria function, we found that ISKNV can induce MMP loss by up to 58% and 78% at days 4 and 5 with a JC1 dye staining assay. Furthermore, we found that pro-apoptotic members Bax and Bak were upregulated from the early replication stage (day one) to the late stage (day 5), but the expression profiles were very dynamically different. On the other hand, by Western blotted analysis, the anti-apoptotic members Bcl-2 and Bcl-xL were upregulated very quickly at the same time from day one (two-fold) and continued to maintain this level at day five. Finally, we found that pro-apoptotic death signals strongly activated the downstream signals of caspase-9 and -3. Taken together, these results suggest that ISKNV infection can induce Bax/Bak-mediated cell death signaling downstream of caspase-9 and -3 activation. During the viral replication cycle with the cell death induction process, the anti-apoptotic members Bcl-2/Bcl-xL interacted with the pro-apoptotic members Bax/Bak to maintain the mitochondrial function in the dynamic interaction so as to maintain the MMP in GF-1 cells. These findings may provide insights into DNA-virus control and treatment.
Collapse
|
7
|
Jiang WD, Zhang L, Feng L, Wu P, Liu Y, Kuang SY, Li SW, Tang L, Mi HF, Zhang L, Zhou XQ. New Insight on the Immune Modulation and Physical Barrier Protection Caused by Vitamin A in Fish Gills Infected With Flavobacterium columnare. Front Immunol 2022; 13:833455. [PMID: 35401542 PMCID: PMC8992971 DOI: 10.3389/fimmu.2022.833455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we have investigated the influence of vitamin A on gill barrier function of grass carp (Ctenopharyngodon idella) infected with Flavobacterium columnare. The fish were fed different concentrations of vitamin A diets for 10 weeks and then infected with F. columnare by immersion. We observed that optimal vitamin A significantly prevented gill rot morbidity in fish infected with F. columnare. Further investigations revealed that vitamin A boosted the gill immunity by increasing the contents of complements (C3 and C4), activities of acid phosphatase (ACP) and lysozyme, mRNAs of β-defensin-1, liver-expressed antimicrobial peptide 2A and 2B (LEAP-2A and LEAP-2B), hepcidin, and anti-inflammatory cytokines like transforming growth factor β1 (TGF-β1), TGF-β2, interleukin-10 (IL-10), and IL-11. It also enhanced the levels of various related signaling molecules including inhibitor protein κBα (IκBα), target of rapamycin (TOR), and ribosome protein S6 kinase 1 (S6K1) but downregulated the expression of pro-inflammatory cytokines including IL-1β, IL-8, tumor necrosis factor α (TNF-α), and interferon γ2 (IFN-γ2) and related signaling molecules including nuclear factor κB p65 (NF-κB p65) (rather than NF-κB p52), IκB kinase β (IKKβ), IKKγ (rather than IKKα), eIF4E-binding protein 1 (4E-BP1), and 4E-BP2 mRNA levels in fish gills. In addition, dietary vitamin A markedly lowered the concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC), increased both the activities and mRNAs of copper/zinc superoxide dismutase (Cu/ZnSOD), MnSOD, glutathione transferases (GSTs), glutathione peroxidase (GPx), and glutathione reductase (GR) associated with upregulation of NF-E2-related factor 2 (Nrf2) mRNAs and downregulation of Kelch-like-ECH-associated protein (Keap1a) and Keap1b mRNAs. Moreover, vitamin A decreased the mRNAs of different apoptotic mediators [caspases 8, 9, 3 (rather than 7)] associated with downregulation of signaling molecule p38 mitogen-activated protein kinase (p38MAPK) mRNAs in fish gills. Besides, vitamin A promoted tight junction (TJ) complex mRNAs [including claudin-b, -c, -3, -7, -12, occludin, and zonula occludens-1 (ZO-1)] that have been linked to the downregulation of myosin light chain kinase (MLCK) signaling. Taken together, the current study demonstrated for the first time that vitamin A markedly enhanced gill health associated with immune modulation and physical barrier protection. Based on protecting fish against gill rot morbidity, ACP activity, and against lipid peroxidation, optimum vitamin A concentrations in on-growing grass carp (262-997 g) were found to be 1,991, 2,188, and 2,934 IU/kg diet, respectively.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, China
| | - Hai-Feng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| |
Collapse
|
8
|
Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep 2022; 12:5654. [PMID: 35383226 PMCID: PMC8983741 DOI: 10.1038/s41598-022-09581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the anti-pancreatic cancer effects of flavonoids in Plumula Nelumbinis. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry showed that apiin, rhoifolin, and vitexin were three principal components in total flavonoids derived from Plumula Nelumbinis, with vitexin being the most abundant component. Cell viability assay revealed that apiin, rhoifolin, and vitexin could inhibit proliferation of PANC-1 and ASPC-1, with rhoifolin showing the maximum inhibitory effect. Rhoifolin inhibited cell proliferation and promoted apoptosis of pancreatic cancer cells, which was associated with up-regulated JNK and p-JNK as well as down-regulated p-AKT. Rhoifolin also inhibited cell migration and invasion, and increased the antioxidant capacity in PANC-1 and ASPC-1. Besides, AKT activator (SC79) or JNK inhibitor (SP600125) effectively reversed the anticancer effects of rhoifolin in pancreatic cancer. Quantitative proteomics analysis showed that rhoifolin altered proteomic profiles in pancreatic cancer cells. Western blot analysis showed that rhoifolin down-regulated transforming growth factor beta 2 (TGF-β2), the regulator of proteoglycan synthesis, with the concomitant down-regulation of phosphorylated SMAD family member 2 (SMAD2), the downstream effector of TGF-β2. In conclusion, rhoifolin regulates the AKT/JNK/caspase-3 and TGF-β2/SMAD2 signaling pathways, which may contribute to its anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Bingxin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yixin Zheng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ningning Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Jiang WD, Zhang L, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Inconsistently impairment of immune function and structural integrity of head kidney and spleen by vitamin A deficiency in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 99:243-256. [PMID: 32058097 DOI: 10.1016/j.fsi.2020.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
To investigate effects of vitamin A (VA) on fish immune function and structural integrity in the head kidney and spleen of fish, total of 540 on-growing grass carp (Ctenopharyngodon idella) were divided into six groups, feeding graded levels of VA (0, 600, 1200, 1800, 2800 and 3800 IU/kg diet) for 70 days. Results showed that dietary VA deficiency depressed antibacterial ability and aggravated inflammatory response partially linked to nuclear factor κB p65 (NF-κB p65) and target of rapamycin (TOR) signaling pathways in the head kidney and spleen of fish. Meanwhile, VA deficiency caused oxidative damage, apoptosis and disruption of tight junctions (TJs), which were partially attributed to the down-regulation of NF-E2-related factor 2 (Nrf2) signaling mediated antioxidant ability, the up-regulation of p38 mitogen-activated protein kinase (p38MAPK) signaling mediated apoptosis and myosin light chain kinase (MLCK) signaling mediated disruption of tight junctions (TJs). Taken together, current study firstly demonstrated that VA deficiency decreased the immune function and damaged the structural integrity of the head kidney and spleen in fish.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
10
|
Chen KW, Chiu HW, Chiu YW, Wu JL, Hong JR. EPA and DHA can modulate cell death via inhibition of the Fas/tBid-mediated signaling pathway with ISKNV infection in grouper fin cell line (GF-1) cells. FISH & SHELLFISH IMMUNOLOGY 2020; 97:608-616. [PMID: 31614198 DOI: 10.1016/j.fsi.2019.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in organisms, including the structure and liquidity of cell membranes, anti-oxidation and anti-inflammation. Very little has been done in terms of the effect of PUFAs on cell death, especially on DNA virus. In this study, we demonstrated that the infectious spleen and kidney necrosis virus (ISKNV) can induce host cell death via the apoptotic cell death pathway, which correlated to modulation by PUFAs in grouper fin cell line (GF-1) cells. We screened the PUFAs, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for the ability of different dosages to prevent cell death in GF-1 cells with ISKNV infection. In the results, each 10 μM of DHA and EPA treatment enhanced host cell viability up to 80% at day 5 post-infection. Then, in Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, DHA- and EPA-treated groups reduced TUNEL positive signals 50% in GF-1 cells with ISKNV infection. Then, through studies of the mechanism of cell death, we found that ISKNV can induce both the Bax/caspase-3 and Fas/caspase-8/tBid death signaling pathways in GF-1 cells, especially at day 5 post-infection. Furthermore, we found that DHA and EPA treatment can either prevent caspase-3 activation on 17-kDa form cleavage or Bid cleaved (15-kDa form) for activation by caspase-8, apparently. On the other hand, the anti-apoptotic gene Bcl-2 was upregulated 0.3-fold and 0.15-fold at day 3 and day 5, respectively, compared to ISKNV-infected and DHA-treated cells; that this did not happen in the EPA-treated group showed that different PUFAs trigger different signals. Finally, ISKNV-infected GF-1 cells treated with either DHA or EPA showed a 5-fold difference in viral titer at day 5. Taken together, these results suggest that optimal PUFA treatment can affect cell death signaling through both the intrinsic and extrinsic death pathways, reducing viral expression and viral titer in GF-1 cells. This finding may provide insight in DNA virus infection and control.
Collapse
Affiliation(s)
- Kuang-Wen Chen
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Yu-Wei Chiu
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC.
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Department of Biotechnology and Bioindustry Sciences, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC; Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
11
|
Soft-shelled turtle iridovirus enters cells via cholesterol-dependent, clathrin-mediated endocytosis as well as macropinocytosis. Arch Virol 2018; 163:3023-3033. [PMID: 30066272 PMCID: PMC7087192 DOI: 10.1007/s00705-018-3966-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/03/2018] [Indexed: 12/01/2022]
Abstract
Ranaviruses are nucleoplasmic large DNA viruses that can cause major economic losses in the aquaculture industry and pose a severe threat to global ecological diversity. The available literature demonstrates that classifiable members of the genus Ranavirus enter cells via multiple and complicated routes. Here, we demonstrated the underlying cellular entry mechanism of soft-shelled turtle iridovirus (STIV) using green fluorescence tagged recombinant virus. Treatment with chlorpromazine, sucrose, ethyl-isopropyl amiloride, chloroquine or bafilomycin A1 all significantly decreased STIV infection, suggesting that STIV uses clathrin-mediated endocytosis and macropinocytosis to enter cells via a pH-dependent pathway. Depletion of cellular cholesterol with methyl-β-cyclodextrin significantly inhibited STIV entry, but neither filipin III nor nystatin did, suggesting that STIV entry was cholesterol dependent but caveola independent. Treatment with dynasore, genistein, ML-7 or cytochalasin D all significantly inhibited STIV infection, indicating that Rac GTPase and myosin II activity were required for the macropinocytosis-like pathway as well as actin polymerization. Our findings suggest that the molecular events involved in STIV entry are not identical to those of other ranavirus isolates. Our results also extend our understanding of the molecular mechanism of iridovirus entry and pathogenesis.
Collapse
|
12
|
Du J, Wang L, Wang Y, Shen J, Pan C, Meng Y, Yang C, Ji H, Dong W. Autophagy and apoptosis induced by Chinese giant salamander (Andrias davidianus) iridovirus (CGSIV). Vet Microbiol 2016; 195:87-95. [PMID: 27771075 DOI: 10.1016/j.vetmic.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
Abstract
The outbreak of Chinese Giant Salamander (Andrias davidianus, CGS) Iridovirus (CGSIV) caused massive death of CGSs. However, some CGSs with low level of CGSIV usually could survive. In our study, major capsid protein (MCP) DNA replicates of CGSIV in shedding skin were employed to assess the relative content of CGSIV in the living CGSs by qPCR. Furthermore, the examinations of autophagy and apoptosis in CGSs in vivo and in the primary renal cells in vitro were performed, respectively. The results showed that the relative contents of CGSIV in the shedding skin could reflect those in liver, spleen, and kidney of the CGSs. In these tissues of the CGSs with low-level replicates of CGSIV, there were not obviously macroscopic lesions. But the irregularly-shaped vesicles perhaps involving in autophagosome were observed by transmission electron microscopy (TEM). The LC3B protein displayed uneven distribution by Immunohistochemistry and the level mRNA of Atg5 was higher in these tissues than that in the tissues of healthy CGSs using qRT-PCR. Meanwhile, the apoptosis also appeared in these tissues by TUNEL staining and higher level mRNA of type I IFN were detected in these tissues using qRT-PCR. Further, both the expression level of LC3B II protein and Atg5 mRNA increased significantly at 2h after the virus infected the primary renal cells from the health CGSs in vitro. In addition, apoptosis and type I IFN mRNA began to increase significantly at 4h after the virus infected the renal cells. It was suggested that autophagy may be a pivotal role for survival of CGSIV in the CGSs during early infection and the rapid proliferation of CGSIV could be inhibited by innate immune response and apoptosis.
Collapse
Affiliation(s)
- Jian Du
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Liqing Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Yuanxian Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Jian Shen
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Chuanyin Pan
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Changming Yang
- Animal Husbandry and Veterinary Station of Chenggu County, Hanzhong 723200, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
13
|
Mitomo S, Omatsu T, Tsuchiaka S, Nagai M, Furuya T, Mizutani T. Activation of c-Jun N-terminal kinase by Akabane virus is required for apoptosis. Res Vet Sci 2016; 107:147-151. [PMID: 27473988 PMCID: PMC7111864 DOI: 10.1016/j.rvsc.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/02/2016] [Accepted: 06/12/2016] [Indexed: 12/13/2022]
Abstract
Akabane virus (AKAV) belongs to the Simbu serogroup of the genus Orthobunyavirus in the family Bunyaviridae. It has been shown that AKAV induces apoptosis in mammalian cells. It is necessary to understand the signaling pathways involved in AKAV-induced apoptosis to further elucidate the molecular virology of AKAV. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are mediators of apoptosis; therefore, we investigated the roles of JNK and p38 MAPK cascades in AKAV-infected cells. We found that JNK and p38 MAPK as well as their downstream substrates, c-Jun and heat shock protein 27 (HSP27), were phosphorylated in response to AKAV infection. A JNK inhibitor (SP600125) inhibited AKAV-mediated apoptosis whereas a p38 MAPK inhibitor (SB203580) did not. We conclude that AKAV infection activates the JNK and p38 MAPK signaling pathways, and the JNK cascade plays a crucial role in AKAV-induced apoptosis in vitro. JNK and p38 MAPK were phosphorylated in response to Akabane virus infection. Downstream substrates, c-Jun and heat shock protein 27, were also phosphorylated by viral infection. JNK inhibitor (SP600125) inhibited AKAV-mediated apoptosis whereas a p38 MAPK inhibitor (SB203580) did not.
Collapse
Affiliation(s)
- S Mitomo
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - T Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - S Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - M Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - T Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - T Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
Yu Y, Huang Y, Wei S, Li P, Zhou L, Ni S, Huang X, Qin Q. A tumour necrosis factor receptor-like protein encoded by Singapore grouper iridovirus modulates cell proliferation, apoptosis and viral replication. J Gen Virol 2015; 97:756-766. [PMID: 26691529 DOI: 10.1099/jgv.0.000379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been demonstrated that tumour necrosis factor receptor (TNFR) homologues encoded by viruses are usually involved in virus immune evasion by regulating the host immune response or mediating apoptotic cell death. Here, a novel TNFR-like protein encoded by Singapore grouper iridovirus (SGIV VP51) was cloned and characterized. Amino acid analysis showed that VP51 contained three cysteine-rich domains (CRDs) and a transmembrane domain at its C terminus. The expression of VP51 in vitro enhanced cell proliferation, and affected cell cycle progression via altering the G1/S transition. Furthermore, VP51 overexpression improved cell viability during SGIV infection via inhibiting virus-induced apoptosis, evidenced by the reduction of apoptotic bodies and the decrease of caspase-3 activation. In addition, overexpression of VP51 increased viral titre and the expression of viral structural protein gene MCP and cell proliferation promoting gene ICP-18. In contrast, the expression of the viral apoptosis inducing gene, LITAF, was significantly decreased. Although all three CRDs were essential for the action of VP51, CRD2 and CRD3 exerted more crucial roles on virus-induced apoptosis, viral gene transcription and virus production, while CRD1 was more crucial for cell proliferation. Together, SGIV TNFR-like products not only affected cell cycle progression and enhanced cell growth by increasing the expression of the virus encoded cell proliferation gene, but also inhibited virus-induced apoptotic cell death by decreasing the expression of the viral apoptosis inducing gene. Our results provided new insights into understanding the underlying mechanism by which iridovirus regulated the apoptotic pathway to complete its life cycle.
Collapse
Affiliation(s)
- Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| |
Collapse
|
15
|
Umasuthan N, Bathige SDNK, Noh JK, Lee J. Gene structure, molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:331-343. [PMID: 26363230 DOI: 10.1016/j.fsi.2015.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The p38 kinases are one of the four subgroups of mitogen-activated protein kinase (MAPK) superfamily which are involved in the innate immunity. The p38 subfamily that includes four members namely p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), regulates the activation of several transcription factors. In this study, a p38β (OfMAPK11) homolog and a p38α (OfMAPK14) homolog of Oplegnathus fasciatus were identified at genomic level. Results clearly showed that both MAPK11 and MAPK14 are well-conserved at both genomic structural- and amino acid (aa)-levels. Genomic sequences of OfMAPK11 (∼ 15.6 kb) and OfMAPK14 (∼ 13.4 kb) had 12 exons. A comparison of exon-intron structural arrangement of these genes from different vertebrate lineages indicated that all the exon lengths are highly conserved, except their terminal exons. Full-length cDNAs of OfMAPK11 (3957 bp) and OfMAPK14 (2504 bp) encoded corresponding proteins of 361 aa and 360 aa, respectively. Both OfMAPK proteins harbored a Ser/Thr protein kinases catalytic domain (S_TKc domain) which includes an activation loop with a dual phosphorylation site (TGY motif) and several specific-binding sites for ATP and substrates. Molecular modeling of the activation loop and substrate binding sites of rock bream MAPKs revealed the conservation of crucial residues and their orientation in 3D space. Transcripts of OfMAPKs were ubiquitously detected in eleven tissues examined, however at different levels. The modulation of OfMAPKs' transcription upon pathogen-associated molecular patterns (PAMPs: flagellin, lipopolysaccharide and poly I:C) and pathogens (Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus) was investigated. Among the seven examined tissues, the flagellin-challenge upregulated the mRNA level of both OfMAPKs in the head kidney. Meanwhile, modulation of OfMAPK mRNA expression in the liver upon other immune-challenges varied in a time-dependent manner. Collectively, these results suggest that OfMAPKs are true members of p38 subfamily, which might be induced by different immune stimuli.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
16
|
Reshi L, Wu JL, Wang HV, Hong JR. Aquatic viruses induce host cell death pathways and its application. Virus Res 2015; 211:133-44. [PMID: 26494167 DOI: 10.1016/j.virusres.2015.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
Abstract
Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.
Collapse
Affiliation(s)
- Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC; Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jen-Leih Wu
- Laboratory of Marine Molecular Biology and Biotechnology, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1. University Road, Tainan City 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, College of Bioscience and Biotechnology, Institute of Biotechnology, National Cheng Kung University, No 1. University Road, Tainan City 701, Taiwan, ROC.
| |
Collapse
|
17
|
Du M, Chen M, Shen H, Wang W, Li Z, Wang W, Huang J, Chen J. CyHV-2 ORF104 activates the p38 MAPK pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 46:268-273. [PMID: 26072141 DOI: 10.1016/j.fsi.2015.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is the pathogen responsible for herpesviral hematopoietic necrosis disease, which causes huge losses on aquaculture. So far the studies of CyHV-2 mainly focus on the identification and detection of this virus, but little is known about the role of specific CyHV-2 genes in the infection process. Based on the genomic information, CyHV-2 ORF104 encodes a kinase-like protein, which is highly conserved among the three CyHVs. Our study was initiated to investigate the role of kinase-like protein ORF104 during virus infection. Subcellular localization study showed that ORF104 was mainly expressed in the nucleus in both human HEK293T and fish EPC cells. However, deletion of the putative nuclear localization signal of ORF104 (ORF104M) resulted in the cytoplasmic distribution in HEK293T. We then examined whether MAPKs were involved in the ORF104-mediated signaling pathway by overexpressing ORF104 and ORF104M in HEK293T. Overexpression of ORF104 and ORF104M resulted in the up-regulation of p38 phosphorylation, but not JNK or ERK, indicating that ORF104 specifically activates p38 signaling pathway. In vivo study showed that CyHV-2 infection enhanced p38 phosphorylation in gibel carp (Carassius auratus gibelio). Interestingly, p38 inhibitor SB203580 strongly reduced fish death caused by CyHV-2 infection. Therefore, our study for the first time reveals the function of ORF104 during CyHV-2 infection, indicating that ORF104 is a potential vaccine candidate for CyHV-2.
Collapse
Affiliation(s)
- Mi Du
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Haifeng Shen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China
| | - Jianhui Huang
- Putian Aquatic Products, Technical Extension Station, Putian, 351100 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005 Fujian, China.
| |
Collapse
|
18
|
Huang X, Wang W, Huang Y, Xu L, Qin Q. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication. FISH & SHELLFISH IMMUNOLOGY 2014; 41:371-379. [PMID: 25260912 DOI: 10.1016/j.fsi.2014.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Increased reports demonstrated that largemouth Bass, Micropterus salmoides in natural and artificial environments were always suffered from an emerging iridovirus disease, largemouth Bass virus (LMBV). However, the underlying mechanism of LMBV pathogenesis remained largely unknown. Here, we investigated the cell signaling events involved in virus induced cell death and viral replication in vitro. We found that LMBV infection in epithelioma papulosum cyprini (EPC) cells induced typical apoptosis, evidenced by the appearance of apoptotic bodies, cytochrome c release, mitochondrial membrane permeabilization (MMP) destruction and reactive oxygen species (ROS) generation. Two initiators of apoptosis, caspase-8 and caspase-9, and the executioner of apoptosis, caspase-3, were all significantly activated with the infection time, suggested that not only mitochondrion-mediated, but also death receptor-mediated apoptosis were involved in LMBV infection. Reporter gene assay showed that the promoter activity of transcription factors including p53, NF-κB, AP-1 and cAMP response element-binding protein (CREB) were decreased during LMBV infection. After treatment with different signaling pathway inhibitors, virus production were significantly suppressed by the inhibition of phosphatidylinositol 3-kinase (PI3K) pathway and extracellular-signal-regulated kinases (ERK) signaling pathway. Furthermore, LMBV infection induced apoptosis was enhanced by PI3K inhibitor LY294002, but decreased by addition of ERK inhibitor UO126. Therefore, we speculated that apoptosis was sophisticatedly regulated by a series of cell signaling events for efficient virus propagation. Taken together, our results provided new insights into the molecular mechanism of ranavirus infection.
Collapse
Affiliation(s)
- Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liwen Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Zheng GH, Liu CM, Sun JM, Feng ZJ, Cheng C. Nickel-induced oxidative stress and apoptosis in Carassius auratus liver by JNK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:105-111. [PMID: 24394944 DOI: 10.1016/j.aquatox.2013.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Nickel (Ni) is ubiquitous in the biosphere and is a common component of natural fresh waters. When present in high concentrations, it becomes toxic to aquatic organisms. It is known that Ni toxicity may induce oxidative stress and apoptosis. However, the precise mechanism and the pathways that are activated in fish are still unclear. Thus, this study aimed to assess which apoptotic pathways are triggered by Ni in Carassius auratus liver, the main target of waterborne pollutants. Fish were exposed to 10, 25, 50 and 100mg/L of nickel sulfate for 96 h. Our data showed that Ni exposure caused fish weight loss (by 10-12%) and decreased locomotory activity (by 1-25%). Ni exposure significantly decreased the relative lymphocyte count (by 1-24%) and increased the relative count of monocytes (by 25-111%) and neutrophils (by 10-322%) as compared to controls. Ni induced oxidative stress, as evidenced by increasing of lipid peroxidation level (29-91%) and depleting of the glutathione levels (7-79%) in fish liver. Ni also suppressed the activities of superoxide dismutase (by 39-55%) and glutathione peroxidase (16-24%) and decreased ATP levels (13-51%) in livers. Moreover, liver caspase-3, one of the key executioners of apoptosis, was markedly activated by the Ni exposure. Ni exposure also increased expression levels of phosphorylated Jun N-terminal kinases (JNK) in liver, which in turn activated pro-apoptotic signaling events by breaking the balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins. In conclusion, these results suggested that Ni induced oxidative stress and apoptosis, at least, via the JNK signaling pathway.
Collapse
Affiliation(s)
- Gui-Hong Zheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou City 221116, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou City 221116, Jiangsu Province, PR China.
| | - Jian-Mei Sun
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou City 221116, Jiangsu Province, PR China
| | - Zhao-Jun Feng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou City 221116, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, Xuzhou City 221116, Jiangsu Province, PR China
| |
Collapse
|
20
|
Huang X, Huang Y, Cai J, Wei S, Gao R, Qin Q. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Singapore grouper iridovirus. Virus Res 2013; 178:340-8. [DOI: 10.1016/j.virusres.2013.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/01/2022]
|
21
|
Lee YJ, Lee C. Stress-activated protein kinases are involved in porcine reproductive and respiratory syndrome virus infection and modulate virus-induced cytokine production. Virology 2012; 427:80-9. [PMID: 22424736 DOI: 10.1016/j.virol.2012.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
The present study examined the role of the p38 MAPK and JNK pathways during PRRSV infection in immortalized porcine alveolar macrophage (PAM) cells. Infection with PRRSV was found to progressively activate p38 and JNK1/2 up to 36 h postinfection and then their phosphorylation levels dramatically decreased to baseline at 48 h postinfection. In contrast, UV-inactivated PRRSV failed to trigger phosphorylation of these SAPKs, indicating that the post-entry process is responsible for their activation. Independent treatment of cells with a selective p38 or JNK inhibitor markedly impaired PRRSV infection, resulting in significant reduction in synthesis of viral genomic and subgenomic RNAs, viral protein expression, and progeny virus production. Notably, cytokine production in PAM cells infected with PRRSV was shown to be altered by inhibiting these SAPKs. Altogether, our data suggest that the p38 and JNK signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | |
Collapse
|
22
|
Hu Q, Yin PH, Lu PX, Shen YG, Yu C, Li SJ, Jia JY, Liu GY, Miao Y, Fan YZ. Bufalin induces apoptosis of pancreatic cancer cells via the JNK signaling pathway. Shijie Huaren Xiaohua Zazhi 2012; 20:100-105. [DOI: 10.11569/wcjd.v20.i2.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether bufalin induces apoptosis of human pancreatic cancer cells via the JNK signaling pathway.
METHODS: The cytostatic effect of bufalin on human pancreatic cancer cell line BxPC-3 was evaluated by MTT assay. The impact of bufalin on apoptosis and p-JNK expression was determined by flow cytometry (FCM) and Western blot, respectively. The mRNA expression level of survivin was detected by fluorescent quantitative PCR in BxPC-3 cells treated with bufalin in the absence or presence of a JNK inhibitor.
RESULTS: Bufalin inhibited cell growth in a concentration- and time-dependent manner. BxPC-3 cells treated with 0.16, 0.32, or 0.64 mg/L of bufalin for 48 h had cell apoptotic rates of 19.36% ± 0.39%, 40.69% ± 0.44% and 59.63% ± 1.14%, respectively, showing a significant difference among the three groups (P < 0.01). After the JNK signaling pathway was blocked, cell apoptotic rate decreased significantly (P < 0.01).After bufalin treatment, p-JNK expression was up-regulated at 1 h and reached the peak at 2 h. The mRNA expression of survivin decreased obviously after treatment with 0.32 mg/L of bufalin for 48 h, but increased significantly when the NK signaling pathway was blocked.
CONCLUSION: Bufalin can induce apoptosis of human pancreatic cancer cells. The anti-pancreatic cancer activity of bufalin might involve down-regulation of survivin mRNA via the SAPK/JNK signal transduction pathway.
Collapse
|
23
|
Zhou A, Zhang S. Regulation of cell signaling and porcine reproductive and respiratory syndrome virus. Cell Signal 2012; 24:973-80. [PMID: 22274732 DOI: 10.1016/j.cellsig.2012.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023]
Abstract
In order to successfully survive in host and persistent infection, porcine reproductive and respiratory syndrome virus (PRRSV) utilized sophisticated mechanisms to suppress or escape from the host' innate and adaptive immune systems, and then changed host gene expression. Signaling pathways play a pivotal role in the regulation of diverse biological processes. Once signaling pathways are activated by a variety of different stimuli, immune responses will be triggered by the activation of chemokines, transcription factors, and inflammatory cytokines to adjust the aggressive replication and dissemination of viruses. PRRSV infection is able to get many signaling pathways activation that facilitates distinct cell functions to modulate immune responses. In addition, the cross-talk of cell signaling pathways also can regulate PRRSV replication and also is present in this review by recent finding.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
24
|
Cai J, Huang Y, Wei S, Huang X, Ye F, Fu J, Qin Q. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1129-1136. [PMID: 22005516 DOI: 10.1016/j.fsi.2011.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are broadly expressed signaling molecules that involves in the regulation of cellular responsible for various extracellular stimuli. In this study, three p38 MAPK genes (Ec-p38a, p38b and p38β) were cloned from grouper, Epinephelus coioides and their characteristics were investigated in vitro. Although Ec-p38a, p38b and p38β showed high homologies to other fish p38a MPAK, p38b MAPK and p38β MAPK, respectively, they all contained the conserved structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW). Phylogenetic analysis indicated that Ec-p38a, p38b and p38β are more closely related to those from fish than mammals. The tissue distribution patterns of Ec-p38a, p38b and p38β were different, and Ec-p38β was up-regulated most obviously in head kidney after Singapore grouper iridovirus (SGIV) infection. Overexpression of Ec-p38β in FHM cells delayed the occurrence of CPE induced by SGIV infection. Further analysis indicated that overexpression of Ec-p38β inhibited viral gene transcription and protein synthesis, as well as SGIV induced typical apoptosis in fish cells. Taken together, our data indicated that Ec-p38β played a crucial role in regulating apoptosis and virus replication during iridovirus infection.
Collapse
Affiliation(s)
- Jia Cai
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Huang X, Huang Y, Ouyang Z, Xu L, Yan Y, Cui H, Han X, Qin Q. Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. Apoptosis 2011; 16:831-45. [PMID: 21656148 DOI: 10.1007/s10495-011-0616-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus induced cell death, including apoptosis and nonapoptotic cell death, plays a critical role in the pathogenesis of viral diseases. Singapore grouper iridovirus (SGIV), a novel iridovirus of genus Ranavirus, causes high mortality and heavy economic losses in grouper aquaculture. Here, using fluorescence microscopy, electron microscopy and biochemical assays, we found that SGIV infection in host (grouper spleen, EAGS) cells evoked nonapoptotic programmed cell death (PCD), characterized by appearance of cytoplasmic vacuoles and distended endoplasmic reticulum, in the absence of DNA fragmentation, apoptotic bodies and caspase activation. In contrast, SGIV induced typical apoptosis in non-host (fathead minnow, FHM) cells, as evidenced by caspase activation and DNA fragmentation, suggesting that SGIV infection induced nonapoptotic cell death by a cell type dependent fashion. Furthermore, viral replication was essential for SGIV induced nonapoptotic cell death, but not for apoptosis. Notably, the disruption of mitochondrial transmembrane potential (ΔΨm) and externalization of phosphatidylserine (PS) were not detected in EAGS cells but in FHM cells after SGIV infection. Moreover, the extracellular signal-regulated kinase (ERK) signaling was involved in SGIV infection induced nonapoptotic cell death and viral replication. This is a first demonstration of ERK-mediated nonapoptotic cell death induced by a DNA virus. These findings contribute to understanding the mechanisms of iridovirus pathogenesis.
Collapse
Affiliation(s)
- Xiaohong Huang
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang Y, Huang X, Cai J, Ye F, Guan L, Liu H, Qin Q. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication. Virus Res 2011; 160:221-9. [PMID: 21756948 DOI: 10.1016/j.virusres.2011.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 12/25/2022]
Abstract
Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | |
Collapse
|