1
|
Russo ML, Sousa AMM, Bhattacharyya A. Consequences of trisomy 21 for brain development in Down syndrome. Nat Rev Neurosci 2024; 25:740-755. [PMID: 39379691 DOI: 10.1038/s41583-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The appearance of cognitive deficits and altered brain morphology in newborns with Down syndrome (DS) suggests that these features are driven by disruptions at the earliest stages of brain development. Despite its high prevalence and extensively characterized cognitive phenotypes, relatively little is known about the cellular and molecular mechanisms that drive the changes seen in DS. Recent technical advances, such as single-cell omics and the development of induced pluripotent stem cell (iPSC) models of DS, now enable in-depth analyses of the biochemical and molecular drivers of altered brain development in DS. Here, we review the current state of knowledge on brain development in DS, focusing primarily on data from human post-mortem brain tissue. We explore the biological mechanisms that have been proposed to lead to intellectual disability in DS, assess the extent to which data from studies using iPSC models supports these hypotheses, and identify current gaps in the field.
Collapse
Affiliation(s)
- Matthew L Russo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Peng L, Baradar AA, Aguado J, Wolvetang E. Cellular senescence and premature aging in Down Syndrome. Mech Ageing Dev 2023; 212:111824. [PMID: 37236373 DOI: 10.1016/j.mad.2023.111824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21, resulting in cognitive impairment, physical abnormalities, and an increased risk of age-related co-morbidities. Individuals with DS exhibit accelerated aging, which has been attributed to several cellular mechanisms, including cellular senescence, a state of irreversible cell cycle arrest that is associated with aging and age-related diseases. Emerging evidence suggests that cellular senescence may play a key role in the pathogenesis of DS and the development of age-related disorders in this population. Importantly, cellular senescence may be a potential therapeutic target in alleviating age-related DS pathology. Here, we discuss the importance of focusing on cellular senescence to understand accelerated aging in DS. We review the current state of knowledge regarding cellular senescence and other hallmarks of aging in DS, including its putative contribution to cognitive impairment, multi-organ dysfunction, and premature aging phenotypes.
Collapse
Affiliation(s)
- Lianli Peng
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alireza A Baradar
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Julio Aguado
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ernst Wolvetang
- Australian Institute for Biotechnology and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel) 2022; 11:antiox11122438. [PMID: 36552646 PMCID: PMC9774833 DOI: 10.3390/antiox11122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.
Collapse
|
4
|
Buczyńska A, Sidorkiewicz I, Ławicki S, Krętowski AJ, Zbucka-Krętowska M. Prenatal Screening of Trisomy 21: Could Oxidative Stress Markers Play a Role? J Clin Med 2021; 10:jcm10112382. [PMID: 34071365 PMCID: PMC8198847 DOI: 10.3390/jcm10112382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Despite significant progress in trisomy 21 (T21) diagnostic tools, amniocentesis is still used for the confirmation of an abnormal fetal karyotype. Invasive tests carry the potential risk of miscarriage; thus, screening biomarkers are commonly used before undergoing invasive procedures. In our study, we investigated the possible application of oxidative stress markers in the prenatal screening of trisomy 21. The DNA/RNA oxidative stress damage products (OSDPs), advanced glycation end (AGE) products, ischemia-modified albumin (IMA), alfa-1-antitrypsin (A1AT), asprosin, and vitamin D concentrations were measured in both maternal plasma and amniotic fluid in trisomy 21 (T21) and euploid pregnancies. The obtained results indicated increased levels of DNA/RNA OSDPs and asprosin with simultaneous decreased levels of vitamin D and A1AT in the study group. The diagnostic utility of the plasma measurement based on the area under the received operative characteristic (ROC) curve (AUC) calculation of asprosin (AUC = 0.965), IMA (AUC = 0.880), AGE (AUC = 0.846) and DNA/RNA OSDPs (AUC = 0.506) in T21 screening was demonstrated. The obtained results indicate a potential role for the application of oxidative stress markers in the prenatal screening of T21 with the highest screening utility of plasma asprosin.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.B.); (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: ; Tel.: +48 85-746-83-36
| |
Collapse
|
5
|
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules 2021; 11:biom11020266. [PMID: 33670211 PMCID: PMC7916967 DOI: 10.3390/biom11020266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer’s disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.
Collapse
|
6
|
de França Bram JM, Talib LL, Joaquim HPG, Carvalho CL, Gattaz WF, Forlenza OV. Alzheimer’s Disease-related Biomarkers in Aging Adults with Down Syndrome: Systematic Review. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190122152855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background:
Down syndrome (DS) is associated with a high prevalence of cognitive
impairment and dementia in middle age and older adults. Given the presence of common neuropathological
findings and similar pathogenic mechanisms, dementia in DS is regarded as a form of
genetically determined, early-onset AD. The clinical characterization of cognitive decline in persons
with DS is a difficult task, due to the presence intellectual disability and pre-existing cognitive impairment.
Subtle changes that occur at early stages of the dementing process may not be perceived
clinically, given that most cognitive screening tests are not sensitive enough to detect them. Therefore,
biological markers will provide support to the diagnosis of DS-related cognitive impairment
and dementia, particularly at early stages of this process.
Objective:
To perform a systematic review of the literature on AD-related biomarkers in DS.
Method:
We searched PubMed, Web of Science and Cochrane Library for scientific papers published
between 2008 and 2018 using as primary mesh terms ‘Down’, ‘Alzheimer’, ‘biomarker’.
Results:
79 studies were retrieved, and 39 were considered eligible for inclusion in the systematic
review: 14 post-mortem studies, 10 neuroimaging, 4 addressing cerebrospinal fluid biomarkers, and
11 on peripheral markers.
Conclusion:
There is consistent growth in the number of publication in this field over the past years.
Studies in DS-related dementia tend to incorporate many of the diagnostic technologies that have
been more extensively studied and validated in AD. In many instances, the study of CNS and peripheral
biomarkers reinforces the presence of AD pathology in DS.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cláudia Lopes Carvalho
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Bletsch A, Mann C, Andrews DS, Daly E, Tan GMY, Murphy DGM, Ecker C. Down syndrome is accompanied by significantly reduced cortical grey-white matter tissue contrast. Hum Brain Mapp 2018; 39:4043-4054. [PMID: 29885016 PMCID: PMC6866483 DOI: 10.1002/hbm.24230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 11/11/2022] Open
Abstract
Increased cortical thickness (CT) has been reported in Down syndrome (DS) during childhood and adolescence, but it remains unclear, which components of the neural architecture underpin these increases and if CT remains altered in adults. Among other factors, differences in CT measures could be driven by reduced tissue contrast between grey and white matter (GWC), which has been reported in neurodegenerative disorders, such as Alzheimer's disease. Using structural magnetic resonance imaging, we therefore examined differences in CT and GWC in 26 adults with DS, and 23 controls, to (1) examine between-group differences in CT in adulthood, (2) establish whether DS is associated with significant reductions in GWC, and (3) determine the influence of GWC variability on between-group differences in CT. As hypothesized, we observed that DS was accompanied by wide-spread increases in CT, and significantly reduced GWC in several large clusters distributed across the cortex. Out of all vertices with a significant between-group difference in CT, 38.50% also displayed a significant reduction in GWC. This percentage of overlap was also statistically significant and extremely unlikely to be obtained by chance (p = .0002). Differences in GWC thus seem to explain some, although not all, of the differences in CT observed in DS. In addition, our study is the first to extend previous in vivo reports of altered CT in DS during childhood and adolescence to older adults, implying that the regional pattern of neuroanatomical differences associated with DS remains stable across the lifespan.
Collapse
Affiliation(s)
- Anke Bletsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital Frankfurt am Main, Goethe‐University Frankfurt am MainFrankfurt am MainGermany
| | - Caroline Mann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital Frankfurt am Main, Goethe‐University Frankfurt am MainFrankfurt am MainGermany
| | - Derek S. Andrews
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | - Giles M. Y. Tan
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital Frankfurt am Main, Goethe‐University Frankfurt am MainFrankfurt am MainGermany
- Department of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| |
Collapse
|
8
|
Dashinimaev EB, Artyuhov AS, Bolshakov AP, Vorotelyak EA, Vasiliev AV. Neurons Derived from Induced Pluripotent Stem Cells of Patients with Down Syndrome Reproduce Early Stages of Alzheimer's Disease Type Pathology in vitro. J Alzheimers Dis 2018; 56:835-847. [PMID: 28059787 DOI: 10.3233/jad-160945] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
People with Down syndrome (DS) are at high risk of developing pathology similar to Alzheimer's disease (AD). Modeling of this pathology in vitro may be useful for studying this phenomenon. In this study, we analyzed three different cultures of neural cells carrying trisomy of chromosome 21, which were generated by directed differentiation from induced pluripotent stem cells (iPS cells). We report here that in vitro generated DS neural cells have abnormal metabolism of amyloid-β (Aβ) manifested by increased secretion and accumulation of Aβ granules of Aβ42 pathological isoform with upregulated expression of the APP gene. Additionally, we found increased expression levels of genes that are considered to be associated with AD (BACE2, RCAN1, ETS2, TMED10), as compared to healthy controls. Thus, the neural cells generated from induced pluripotent stem cells with DS reproduce initial cellular signs of AD-type pathology and can be useful tools for modeling and studying this variant of AD in vitro.
Collapse
Affiliation(s)
- Erdem B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander S Artyuhov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Vasiliev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Colvin KL, Yeager ME. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur Respir Rev 2017; 26:26/143/160098. [DOI: 10.1183/16000617.0098-2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.
Collapse
|
10
|
Tramutola A, Pupo G, Di Domenico F, Barone E, Arena A, Lanzillotta C, Brokeaart D, Blarzino C, Head E, Butterfield DA, Perluigi M. Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. J Alzheimers Dis 2017; 52:359-371. [PMID: 26967221 DOI: 10.3233/jad-151105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, resulting from trisomy of chromosome 21. The main feature of DS neuropathology includes early onset of Alzheimer's disease (AD), with deposition of senile plaques and tangles. We hypothesized that apoptosis may be activated in the presence of AD neuropathology in DS, thus we measured proteins associated with upstream and downstream pathways of p53 in the frontal cortex from DS cases with and without AD pathology and from Ts65Dn mice, at different ages. We observed increased acetylation and phosphorylation of p53, coupled to reduced MDM2/p53 complex level and lower levels of SIRT1. Activation of p53 was associated with a number of targets (BAX, PARP1, caspase-3, p21, heat shock proteins, and PGC1α) that were modulated in both DS and DS/AD compared with age-matched controls. In particular, the most relevant changes (increased p-p53 and acetyl-p53 and reduced formation of MDM2/p53 complex) were found to be modified only in the presence of AD pathology in DS. In addition, a similar pattern of alterations in the p53 pathway was found in Ts65Dn mice. These results suggest that p53 may integrate different signals, which can result in a pro-apoptotic-phenotype contributing to AD neuropathology in people with DS.
Collapse
Affiliation(s)
| | - Gilda Pupo
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Providencia, Santiago, Chile
| | - Andrea Arena
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | | | | | - Carla Blarzino
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Elizabeth Head
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA
| | - D Allan Butterfield
- Sanders-Brown Center of Aging, University of Kentucky, Lexington KY, USA.,Department of Chemistry, University of Kentucky, Lexington KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
11
|
Low risk of solid tumors in persons with Down syndrome. Genet Med 2016; 18:1151-1157. [DOI: 10.1038/gim.2016.23] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
|
12
|
Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:509241. [PMID: 25852816 PMCID: PMC4380103 DOI: 10.1155/2015/509241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Abstract
Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.
Collapse
|
13
|
Ford SA, Blanck G. Signal persistence and amplification in cancer development and possible, related opportunities for novel therapies. Biochim Biophys Acta Rev Cancer 2015; 1855:18-23. [DOI: 10.1016/j.bbcan.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
|
14
|
García-Cerro S, Martínez P, Vidal V, Corrales A, Flórez J, Vidal R, Rueda N, Arbonés ML, Martínez-Cué C. Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PLoS One 2014; 9:e106572. [PMID: 25188425 PMCID: PMC4154723 DOI: 10.1371/journal.pone.0106572] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023] Open
Abstract
Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/-) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Paula Martínez
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Andrea Corrales
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Rebeca Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
- Institute of Biomedicine and Biotechnology (IBBITEC), (University of Cantabria- Consejo Superior de Investigaciones Científicas (CSIC) and Investigación, Desarrollo e Investigación Cantabria (IDICAN)), Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - María L. Arbonés
- Barcelona Institute of Molecular Biology, Centro Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
15
|
Ragunath PK, Abhinand PA. Systems biological approach to investigate the lack of familial link between Down's Syndrome & Neural Tube Disorders. Bioinformation 2013; 9:610-6. [PMID: 23904737 PMCID: PMC3725001 DOI: 10.6026/97320630009610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Systems Biology involves the study of the interactions of biological systems and ultimately their functions. Down's syndrome (DS) is one of the most common genetic disorders which are caused by complete, or occasionally partial, triplication of chromosome 21, characterized by cognitive and language dysfunction coupled with sensory and neuromotor deficits. Neural Tube Disorders (NTDs) are a group of congenital malformations of the central nervous system and neighboring structures related to defective neural tube closure during the first trimester of pregnancy usually occurring between days 18-29 of gestation. Several studies in the past have provided considerable evidence that abnormal folate and methyl metabolism are associated with onset of DS & NTDs. There is a possible common etiological pathway for both NTDs and Down's syndrome. But, various research studies over the years have indicated very little evidence for familial link between the two disorders. Our research aimed at the gene expression profiling of microarray datasets pertaining to the two disorders to identify genes whose expression levels are significantly altered in these conditions. The genes which were 1.5 fold unregulated and having a p-value <0.05 were filtered out and gene interaction network were constructed for both NTDs and DS. The top ranked dense clique for both the disorders were recognized and over representation analysis was carried out for each of the constituent genes. The comprehensive manual analysis of these genes yields a hypothetical understanding of the lack of familial link between DS and NTDs. There were no genes involved with folic acid present in the dense cliques. Only - CBL, EGFR genes were commonly present, which makes the allelic variants of these genes - good candidates for future studies regarding the familial link between DS and NTDs. ABBREVIATIONS NTD - Neural Tube Disorders, DS - Down's Syndrome, MTHFR - Methylenetetrahydrofolate reductase, MTRR- 5 - methyltetrahydrofolate-homocysteine methyltransferase reductase.
Collapse
Affiliation(s)
- PK Ragunath
- Department of Bioinformatics, Sri Ramachandra University, Porur, Chennai – 600 116, India
| | - PA Abhinand
- Department of Bioinformatics, Sri Ramachandra University, Porur, Chennai – 600 116, India
| |
Collapse
|
16
|
Corrales A, Martínez P, García S, Vidal V, García E, Flórez J, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome. J Pineal Res 2013; 54:346-58. [PMID: 23350971 DOI: 10.1111/jpi.12037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/14/2012] [Indexed: 01/08/2023]
Abstract
Ts65Dn mice (TS), the most commonly used model of Down syndrome (DS), exhibit phenotypic characteristics of this condition. Both TS mice and DS individuals present cognitive disturbances, age-related cholinergic degeneration, and increased brain expression of β-amyloid precursor protein (AβPP). These neurodegenerative processes may contribute to the progressive cognitive decline observed in DS. Melatonin is a pineal indoleamine that has been reported to reduce neurodegenerative processes and improve cognitive deficits in various animal models. In this study, we evaluated the potentially beneficial effects of long-term melatonin treatment on the cognitive deficits, cholinergic degeneration, and enhanced AβPP and β-amyloid levels of TS mice. Melatonin was administered for 5 months to 5- to 6-month-old TS and control (CO) mice. Melatonin treatment improved spatial learning and memory and increased the number of choline acetyltransferase (ChAT)-positive cells in the medial septum of both TS and CO mice. However, melatonin treatment did not significantly reduce AβPP or β-amyloid levels in the cortex or the hippocampus of TS mice. Melatonin administration did reduce anxiety in TS mice without inducing sensorimotor alterations, indicating that prolonged treatment with this indoleamine is devoid of noncognitive behavioral side effects (e.g., motor coordination, sensorimotor abilities, or spontaneous activity). Our results suggest that melatonin administration might improve the cognitive abilities of both TS and CO mice, at least partially, by reducing the age-related degeneration of basal forebrain cholinergic neurons. Thus, chronic melatonin supplementation may be an effective treatment for delaying the age-related progression of cognitive deterioration found in DS.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|