1
|
Lee YT, Kang JW, Heo JI, Seo TW, Yoo SJ. cIAP2 supports the cell growth-promoting activity of FMR1 in gastric cancer via CARD-RING domains. Biochem Biophys Res Commun 2025; 743:151189. [PMID: 39693941 DOI: 10.1016/j.bbrc.2024.151189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients. Reducing FMR1 expression decreased cell growth in gastric cancer cell lines. The Smac Mimetic LCL161 reduced both FMR1 and cellular inhibitor of apoptosis protein 2 (cIAP2) levels. Suppressing cIAP2, but not cIAP1, led to decreased FMR1, while cIAP2 overexpression increased FMR1 in gastric cancer cells. We observed that cIAP2 is also upregulated in gastric cancer patients, with FMR1 and cIAP2 levels positively correlated in both gastric and colorectal cancers. Notably, cIAP2 binds FMR1 via its CARD domain, unlike most cIAP2 targets that bind the BIR domain. Furthermore, cIAP2 ubiquitinates FMR1 through its CARD-RING domains, stabilizing the protein without proteasomal degradation. FMR1, modulated by cIAP2, promotes gastric cancer cell growth. Collectively, our findings highlight FMR1's growth-promoting role in gastric cancer and reveal a novel function of cIAP2 in stabilizing FMR1 as an E3 ligase. These results suggest targeting cIAP2 could be an effective strategy for treating gastric cancer by downregulating both cIAP2 and FMR1.
Collapse
Affiliation(s)
- Yui Taek Lee
- Department of Biology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Ji Woo Kang
- Department of Biology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Jeong In Heo
- Department of Biology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Tae Woong Seo
- Department of Biology, Kyung Hee University, Seoul, 02447, South Korea
| | - Soon Ji Yoo
- Department of Biology, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
2
|
Vitozzi S, Correa SG, Lozano A, Fernández EJ, Quiroga R. A novel missense mutation in the AIRE gene underlying autoimmune polyglandular syndrome type 1. Immunogenetics 2024; 76:69-74. [PMID: 38030802 DOI: 10.1007/s00251-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023]
Abstract
The immune regulator gene AIRE plays an essential role in the establishment of immune tolerance and the prevention of autoimmunity. This transcription factor plays a critical role in promoting self-tolerance in the thymus by regulating the expression of a large number of self-antigens that share the common feature of being tissue-restricted in their expression pattern in the periphery. Dysfunction of AIRE in humans causes a rare disease, autoimmune polyglandular syndrome type 1 (APS1), characterized by an autoimmune response against peripheral tissues, particularly endocrine tissues. Although a few dominant mutations have been described, the inactivation of AIRE is usually caused by recessive mutations. Recent data suggests that alterations in AIRE function contribute not only to APS1 but also to more common forms of autoimmune disease. Here, we present a previously unreported missense mutation (NM_000383.2:c.260 T > C) in exon 2 of the AIRE gene, predicted to cause the substitution (p.(Leu87Pro)) in the CARD domain of the AIRE protein. When inherited in conjunction with another dysfunctional AIRE allele, this mutation was associated with immune dysregulation in a pediatric patient. The presence of hypergammaglobulinemia, malabsorption syndrome, ectodermal dysplasia, mucocutaneous candidiasis, vitiligo, and hypothyroidism as well as the presence of multiple autoantibodies allowed us to confirm an APS1 diagnosis.
Collapse
Affiliation(s)
- Susana Vitozzi
- Laboratorios LACE, Córdoba, Argentina.
- Facultad de Ciencias de la Salud, Cátedra de Inmunología, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Silvia Graciela Correa
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Alejandro Lozano
- Facultad de Ciencias de la Salud, Cátedra de Inmunología, Universidad Católica de Córdoba, Córdoba, Argentina
- Servicio de Alergia e Inmunología, Clínica Universitaria Reina Fabiola, Córdoba, Argentina
| | | | - Rodrigo Quiroga
- Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
3
|
Ke F, Zhang QY. Advances on genomes studies of large DNA viruses in aquaculture: A minireview. Genomics 2023; 115:110720. [PMID: 37757975 DOI: 10.1016/j.ygeno.2023.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Hui Y, Ma Q, Zhou XR, Wang H, Dong JH, Gao LN, Zhang T, Li YY, Gong T. Immunological characterization and diagnostic models of RNA N6-methyladenosine regulators in Alzheimer's disease. Sci Rep 2023; 13:14588. [PMID: 37666846 PMCID: PMC10477294 DOI: 10.1038/s41598-023-41129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, and it displays both clinical and molecular variability. RNA N6-methyladenosine (m6A) regulators are involved in a wide range of essential cellular processes. In this study, we aimed to identify molecular signatures associated with m6A in Alzheimer's disease and use those signatures to develop a predictive model. We examined the expression patterns of m6A regulators and immune features in Alzheimer's disease using the GSE33000 dataset. We examined the immune cell infiltration and molecular groups based on m6A-related genes in 310 Alzheimer's disease samples. The WGCNA algorithm was utilized to determine differently expressed genes within each cluster. After evaluating the strengths and weaknesses of the random forest model, the support vector machine model, the generalized linear model, and eXtreme Gradient Boosting, the best machine model was selected. Methods such as nomograms, calibration curves, judgment curve analysis, and the use of independent data sets were used to verify the accuracy of the predictions made. Alzheimer's disease and non-disease Alzheimer's groups were compared to identify dysregulated m6A-related genes and activated immune responses. In Alzheimer's disease, two molecular clusters linked to m6A were identified. Immune infiltration analysis indicated substantial variation in protection between groups. Cluster 1 included processes like the Toll-like receptor signaling cascade, positive regulation of chromatin binding, and numerous malignancies; cluster 2 included processes like the cell cycle, mRNA transport, and ubiquitin-mediated proteolysis. With a lower residual and root mean square error and a larger area under the curve (AUC = 0.951), the Random forest machine model showed the greatest discriminative performance. The resulting random forest model was based on five genes, and it performed well (AUC = 0.894) on external validation datasets. Accuracy in predicting Alzheimer's disease subgroups was also shown by analyses of nomograms, calibration curves, and decision curves. In this research, we methodically outlined the tangled web of connections between m6A and AD and created a promising prediction model for gauging the correlation between m6A subtype risk and AD pathology.
Collapse
Affiliation(s)
- Yuan Hui
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Qi Ma
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xue-Rui Zhou
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Huan Wang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jian-Hua Dong
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li-Na Gao
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tian Zhang
- School of Integrative Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan-Yi Li
- Department of Encephalopathy II, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Ting Gong
- Department of Encephalopathy II, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China.
| |
Collapse
|
5
|
Hao K, Sang L, Ding L, Shen X, Fu D, Qi X. Enoxaparin sodium bone cement displays local anti-inflammatory effects by regulating the expression of IL-6 and TNF-α. Heliyon 2023; 9:e16530. [PMID: 37274684 PMCID: PMC10238720 DOI: 10.1016/j.heliyon.2023.e16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Objective To explore the roles of Enoxaparin Sodium-Polymethyl methacrylate bone cement on inflammatory factors Interleukin-6 and Tumour Necrosis Factor-α in a rabbit knee replacement model. As well as the mechanisms underlying its potential effects on lipopolysaccharide-induced endothelial cell injury. Methods A knee replacement model was established using New Zealand rabbits. Forty rabbits were randomly divided into four groups: PMMA, ES-PMMA, sham-operated, and blank control groups (n = 10 in each group). Local tissues around the incision were taken at the 30th, 60th, and 90th minute after the surgical implantation of the corresponding bone cement. Immunohistochemistry in the surgical field was used to measure the expression of local inflammatory factors IL-6 and TNF-α. In the in vitro experiments, 1 cm3 of bone cement was immersed in 3 mL of the medium for 24 h. The bone cement was discarded and diluted to 25% with normal medium. Pre-experiments were screened for the best LPS-inducing concentration of 100 mg/mL, and the most compatible LPS concentration was used for subsequent experiments simulating the primary cultures of rats' Inferior Vena Cava Endothelial Cells. The experiments were divided into four groups: blank control group, LPS induction group, PMMA + LPS group, and ES-PMMA + LPS group. The apoptosis rate was detected by flow cytometry, and the expression levels of TNF-α and IL-6 in the cells and supernatant were measured by ELISA, western blotting, and immunofluorescence. Results According to immunohistochemical results, IL-6-positive cells were concentrated in the tissue interstitial space. In the PMMA and sham-operated groups, the number of IL-6-positive cells gradually increased over time. At all time points, IL-6 expression in the ES-PMMA group was much lower than in the PMMA and sham-operated groups. At 30 min, TNF-α positive cells in the ES-PMMA group expressed less than those in the PMMA and sham-operated groups, with no discernible difference between the PMMA and ES-PMMA groups at 60 or 90 min. Using ELISA and flow cytometry, the expression levels of IL-6 and TNF-α were improved and the apoptosis rate was magnified in the LPS-induced group (***P < 0.001) in contrast with the blank control group. Additionally, the expression levels of IL-6 and TNF-α were reduced in the ES-PMMA + LPS group compared with the LPS-induced group (*P < 0.05) and the apoptosis rate was reduced (***P < 0.001), with statistically significant variations. Western blotting and immunofluorescence analysis confirmed that IL-6 and TNF-α protein expression in cells was upregulated in the LPS-induced group compared to the blank control group (***P < 0.001), and the mean fluorescence intensity was enlarged (***P < 0.001). Meanwhile, IL-6 and TNF-α expression in the ES-PMMA + LPS group were down-regulated (**P < 0.01 or *P < 0.05) compared with the LPS-induced group and PMMA + LPS crew protein expression, and the average fluorescence intensity of IL-6 and TNF-α was lowered in the ES-PMMA + LPS group compared to the LPS-induced group (***P < 0.001). Conclusions ES-PMMA bone cement reduced the expression levels of local inflammatory factors IL-6 and TNF-α in a rabbit knee model. ES-PMMA bone cement reduced the rate of LPS-induced endothelial cell apoptosis and diminished local inflammatory damage by regulating the secretion of inflammatory factors TNF-α and IL-6.
Collapse
Affiliation(s)
- Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139#Ziqiang Road, Shijiazhuang, Hebei Province, China
| | - Linchao Sang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139#Ziqiang Road, Shijiazhuang, Hebei Province, China
| | - Luobin Ding
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139#Ziqiang Road, Shijiazhuang, Hebei Province, China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139#Ziqiang Road, Shijiazhuang, Hebei Province, China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, 139#Ziqiang Road, Shijiazhuang, Hebei Province, China
| |
Collapse
|
6
|
Li F, Zhao X, Xie F, Wang Z, Ding H, Wang W, Jiao R, Pan Y, Kong L. Nuciferine blocks MIB2-mediated CARD6 polyubiquitination and degradation in the amelioration of high fructose-induced liver lipid accumulation. Food Funct 2023; 14:4706-4721. [PMID: 37186242 DOI: 10.1039/d2fo03622c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dietary alkaloid nuciferine isolated from the leaves of Nelumbo nucifera can ameliorate dyslipidemia and liver lipid accumulation, but the underlying mechanism remains unclear. Caspase recruitment domain protein family member 6 (CARD6) is suggested to play an important role in metabolic diseases. This study aimed to investigate the role and the upstream regulator of CARD6 in high fructose-induced liver lipid accumulation and whether and how the anti-lipid accumulation effect of nuciferine was related to CARD6. Herein, we found that high fructose decreased CARD6 expression and increased ASK1 and JNK1/2 phosphorylation in rat livers and hepatocytes, which were attenuated by nuciferine. Furthermore, after the transfection with HA-CARD6, CARD6 siRNA and MIB2 siRNA, the data showed that CARD6 overexpression blocked high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation as well as lipid accumulation in hepatocytes. CARD6 siRNA reversed the amelioration of nuciferine to high fructose-induced upregulation of ASK1 and JNK1/2 phosphorylation in hepatocyte lipid accumulation. Mechanistically, high fructose upregulated MIB2 expression by interacting with CARD6 and promoting K48-linked CARD6 polyubiquitination and degradation in high fructose-stimulated hepatocytes which were explored by immunoblotting, immunofluorescence, and immunoprecipitation. However, MIB2 siRNA reversed high fructose-induced downregulation of CARD6 and lipid accumulation in hepatocytes. Notably, nuciferine reduced MIB2 expression and thus decreased K48-linked CARD6 polyubiquitination and degradation in the amelioration of high fructose-induced lipid accumulation in hepatocytes. These results suggested that nuciferine exhibited a protective effect against high fructose-induced liver lipid accumulation through blocking MIB2-mediated CARD6 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Fengyu Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Hong Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wanru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruiqing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
7
|
Hu A, Hu Z, Zou H, Zhang J, Zhang D, Wang H, Zhong J, Chen B. CARD9 in host immunity to fungal, bacterial, viral, and parasitic infections: An update. Front Microbiol 2022; 13:1021837. [PMID: 36439825 PMCID: PMC9682022 DOI: 10.3389/fmicb.2022.1021837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/07/2022] [Indexed: 10/14/2023] Open
Abstract
Microbial infection, caused by fungi, bacteria, viruses, and parasites, significantly contributes to the global death burden and health costs. The innate and adaptive immune systems orchestrate a multifaceted signaling response to invading pathogens as the human antimicrobial system. In this process, caspase recruitment domain-containing protein 9 (CARD9) emerges as a critical intermediary adaptor molecule to participate in regulating a series of antimicrobial immune reactions. Previous publications have confirmed that CARD9 plays a crucial role in fungal, bacterial, viral, and parasitic infections. In this study, we aim to provide an update on the recent clinical and basic studies where the mechanism and function of CARD9 have been further studied and understood. In addition, we summarize the latest treatment and prevention strategies based on CARD9 and discuss the current perspectives and future direction of CARD9.
Collapse
Affiliation(s)
- Ang Hu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zeming Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Haohong Zou
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jiankang Zhang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dongliang Zhang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hao Wang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Bin Chen
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Sequence, Expression, and Anti-GCRV Function of the Ferritin from the Grass Carp, Ctenopharyngodon idellus. Int J Mol Sci 2022; 23:ijms23126835. [PMID: 35743279 PMCID: PMC9224801 DOI: 10.3390/ijms23126835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ferritin possesses an immune function to defend against pathogen infection. To elucidate the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids. Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous. Ciferritin contains a conserved ferritin domain (interval: 10−94 aa), and the caspase recruitment domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the progeny of the maternal-immunized group was 1.00 ± 0.14. In addition, methylation levels of “CpG9” and “CpG10” loci were significantly lower in the progeny of maternal-immunized fish than those in the common group. Except for the “CpG5”, methylation levels of all other detected “CpG” loci negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of “CpG1−10” negatively correlated with the Ciferritin expressions. The Ciferritin expression level was significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin, which provide a basis for achieving resistance to GCRV in grass carp breeding.
Collapse
|
9
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
10
|
Li K, Zheng J, Wirawan M, Trinh NM, Fedorova O, Griffin PR, Pyle AM, Luo D. Insights into the structure and RNA-binding specificity of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3). Nucleic Acids Res 2021; 49:9978-9991. [PMID: 34403472 PMCID: PMC8464030 DOI: 10.1093/nar/gkab712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
DRH-3 is critically involved in germline development and RNA interference (RNAi) facilitated chromosome segregation via the 22G-siRNA pathway in Caenorhabditis elegans. DRH-3 has similar domain architecture to RIG-I-like receptors (RLRs) and belongs to the RIG-I-like RNA helicase family. The molecular understanding of DRH-3 and its function in endogenous RNAi pathways remains elusive. In this study, we solved the crystal structures of the DRH-3 N-terminal domain (NTD) and the C-terminal domains (CTDs) in complex with 5'-triphosphorylated RNAs. The NTD of DRH-3 adopts a distinct fold of tandem caspase activation and recruitment domains (CARDs) structurally similar to the CARDs of RIG-I and MDA5, suggesting a signaling function in the endogenous RNAi biogenesis. The CTD preferentially recognizes 5'-triphosphorylated double-stranded RNAs bearing the typical features of secondary siRNA transcripts. The full-length DRH-3 displays unique structural dynamics upon binding to RNA duplexes that differ from RIG-I or MDA5. These features of DRH-3 showcase the evolutionary divergence of the Dicer and RLR family of helicases.
Collapse
Affiliation(s)
- Kuohan Li
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Jie Zheng
- The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Nguyen Mai Trinh
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| | - Olga Fedorova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive 636921, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive 636921, Singapore
| |
Collapse
|
11
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:biomedicines9050519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| |
Collapse
|
12
|
Boda F, Banfai K, Garai K, Kovacs B, Almasi A, Scheffer D, Sinkler RL, Csonka R, Czompoly T, Kvell K. Effect of Bitis gabonica and Dendroaspis angusticeps snake venoms on apoptosis-related genes in human thymic epithelial cells. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200057. [PMID: 33402885 PMCID: PMC7745260 DOI: 10.1590/1678-9199-jvatitd-2020-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from Bitis gabonica and Dendroaspis angusticeps. Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study). Gene expressional changes restricted to apoptosis were assayed by TaqMan Array (Human Apoptosis Plate). Results: The most prominent gene expressional changes were shown by CASP5 (≈ 2.5 million-fold, confirmed by dedicated quantitative polymerase chain reaction) and CARD9 (0.016-fold) for B. gabonica, and BIRC7 (6.46-fold) and CASP1 (0.30-fold) for D. angusticeps. Conclusion: The observed apoptotic environment suggests that pyroptosis may be the dominant pathway through which B. gabonica and D. angusticeps snake venoms trigger thymic epithelial apoptosis following envenomation.
Collapse
Affiliation(s)
- Francisc Boda
- Department F1, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Bela Kovacs
- Department F1, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Attila Almasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Dalma Scheffer
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Reka Lambertne Sinkler
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Robert Csonka
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Tamas Czompoly
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
13
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Dutta S, Das N, Mukherjee P. Picking up a Fight: Fine Tuning Mitochondrial Innate Immune Defenses Against RNA Viruses. Front Microbiol 2020; 11:1990. [PMID: 32983015 PMCID: PMC7487669 DOI: 10.3389/fmicb.2020.01990] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
As the world faces the challenge of the COVID-19 pandemic, it has become an urgent need of the hour to understand how our immune system sense and respond to RNA viruses that are often life-threatening. While most vaccine strategies for these viruses are developed around a programmed antibody response, relatively less attention is paid to our innate immune defenses that can determine the outcome of a viral infection via the production of antiviral cytokines like Type I Interferons. However, it is becoming increasingly evident that the "cytokine storm" induced by aberrant activation of the innate immune response against a viral pathogen may sometimes offer replicative advantage to the virus thus promoting disease pathogenesis. Thus, it is important to fine tune the responses of the innate immune network that can be achieved via a deeper insight into the candidate molecules involved. Several pattern recognition receptors (PRRs) like the Toll like receptors (TLRs), NOD-like receptors (NLRs), and the retinoic acid inducible gene-I (RIG-I) like receptors (RLRs) recognize cytosolic RNA viruses and mount an antiviral immune response. RLRs recognize invasive viral RNA produced during infection and mediate the induction of Type I Interferons via the mitochondrial antiviral signaling (MAVS) molecule. It is an intriguing fact that the mitochondrion, one of the cell's most vital organelle, has evolved to be a central hub in this antiviral defense. However, cytokine responses and interferon signaling via MAVS signalosome at the mitochondria must be tightly regulated to prevent overactivation of the immune responses. This review focuses on our current understanding of the innate immune sensing of the host mitochondria by the RLR-MAVS signalosome and its specificity against some of the emerging/re-emerging RNA viruses like Ebola, Zika, Influenza A virus (IAV), and severe acute respiratory syndrome-coronavirus (SARS-CoV) that may expand our understanding for novel pharmaceutical development.
Collapse
|
15
|
Zeng H, Hamlin SK, Safratowich BD, Cheng WH, Johnson LK. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: linking dietary fiber to cancer prevention. Nutr Res 2020; 83:63-72. [PMID: 33017771 DOI: 10.1016/j.nutres.2020.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Intake of dietary fiber may protect against colon cancer. The anticancer property is associated with an increased production of short chain fatty acids (SCFAs), including acetate, propionate and butyrate, during dietary fiber fermentation in the colon. However, the mechanisms remain to be determined. We hypothesized that butyrate exhibits a stronger inhibitory potential against colon cancer cell proliferation compared with acetate and propionate. We determined the half maximal inhibitory concentrations (IC50) of SCFAs in HCT116 human colon cancer cell proliferation by examining cell growth curves. At 24- and 48-hour time points, IC50 (mmol/L) concentrations of acetate, propionate, and butyrate were [66.0 and 29.0], [9.2 and 3.6], and [2.5 and 1.3], respectively. Consistent with the greater anti-proliferative effect, butyrate exhibits >3-fold stronger potential for inducing cell cycle arrest at the G2 phase with a drop in S-phase fraction (including c-Myc/p21 signaling) and apoptosis when compared with acetate and propionate. Subsequently, we focused on the effect of butyrate on apoptotic gene expression. Using a PCR array analysis, we identified 17 pro-apoptotic genes, 6 anti-apoptotic genes, and 4 cellular mediator genes with >1-fold increase or decrease in mRNA levels out of 93 apoptosis related genes in butyrate-treated HCT116 cells when compared with untreated HCT116 cells. These genes were mainly involved in the TNF, NFκB, CARD, and BCL-2 regulated pathways. Taken together, our data indicate a greater inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Stephanie K Hamlin
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762
| | - LuAnn K Johnson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| |
Collapse
|
16
|
Wang Q, Zhang T, Chang X, Lim DY, Wang K, Bai R, Wang T, Ryu J, Chen H, Yao K, Ma WY, Boardman LA, Bode AM, Dong Z. ARC Is a Critical Protector against Inflammatory Bowel Disease (IBD) and IBD-Associated Colorectal Tumorigenesis. Cancer Res 2020; 80:4158-4171. [PMID: 32816906 DOI: 10.1158/0008-5472.can-20-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/25/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
The key functional molecules involved in inflammatory bowel disease (IBD) and IBD-induced colorectal tumorigenesis remain unclear. In this study, we found that the apoptosis repressor with caspase recruitment domain (ARC) protein plays critical roles in IBD. ARC-deficient mice exhibited substantially higher susceptibility to dextran sulfate sodium (DSS)-induced IBD compared with wild-type mice. The inflammatory burden induced in ARC-deficient conditions was inversely correlated with CCL5 and CXCL5 levels in immune cells, especially CD4-positive T cells. Pathologically, ARC expression in immune cells was significantly decreased in clinical biopsy specimens from patients with IBD compared with normal subjects. In addition, ARC levels inversely correlated with CCL5 and CXCL5 levels in human biopsy specimens. ARC interacted with TNF receptor associated factor (TRAF) 6, regulating ubiquitination of TRAF6, which was associated with NF-κB signaling. Importantly, we identified a novel ubiquitination site at lysine 461, which was critical in the function of ARC in IBD. ARC played a critical role in IBD and IBD-associated colon cancer in a bone marrow transplantation model and azoxymethane/DSS-induced colitis cancer mouse models. Overall, these findings reveal that ARC is critically involved in the maintenance of intestinal homeostasis and protection against IBD through its ubiquitination of TRAF6 and subsequent modulation of NF-κB activation in T cells. SIGNIFICANCE: This study uncovers a crucial role of ARC in the immune system and IBD, giving rise to a novel strategy for IBD and IBD-associated colon cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xiaoyu Chang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Keke Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ruihua Bai
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- The Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Ting Wang
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Wei-Ya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Kaur G, Burroughs AM, Iyer LM, Aravind L. Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 2020; 9:e52696. [PMID: 32101166 PMCID: PMC7159879 DOI: 10.7554/elife.52696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Social cellular aggregation or multicellular organization pose increased risk of transmission of infections through the system upon infection of a single cell. The generality of the evolutionary responses to this outside of Metazoa remains unclear. We report the discovery of several thematically unified, remarkable biological conflict systems preponderantly present in multicellular prokaryotes. These combine thresholding mechanisms utilizing NTPase chaperones (the MoxR-vWA couple), GTPases and proteolytic cascades with hypervariable effectors, which vary either by using a reverse transcriptase-dependent diversity-generating system or through a system of acquisition of diverse protein modules, typically in inactive form, from various cellular subsystems. Conciliant lines of evidence indicate their deployment against invasive entities, like viruses, to limit their spread in multicellular/social contexts via physical containment, dominant-negative interactions or apoptosis. These findings argue for both a similar operational 'grammar' and shared protein domains in the sensing and limiting of infections during the multiple emergences of multicellularity.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
18
|
Wang JL, Luo X, Liu L. Targeting CARD6 attenuates spinal cord injury (SCI) in mice through inhibiting apoptosis, inflammation and oxidative stress associated ROS production. Aging (Albany NY) 2019; 11:12213-12235. [PMID: 31841440 PMCID: PMC6949089 DOI: 10.18632/aging.102561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) causes long-term and severe disability, influencing the quality of life and triggering serious socioeconomic consequences. Lack of effective pharmacotherapies for SCI is largely attributable to an incomplete understanding of its pathogenesis. Caspase recruitment domain family member 6 (CARD6) was initially suggested to be a protein playing significant role in NF-κB activation. However, the effects of CARD6 on SCI progression remain unknown. In this study, the wild type (CARD6+/+), CARD6 knockout (CARD6-/-) and CARD6 transgenic (TG) mice were subjected to a SCI model in vivo, and in vitro experiments were conducted by treating microglia cells with lipopolysaccharide (LPS). Here, we identified CARD6 as a suppressor of SCI in mice. CARD6 knockout significantly accelerated functional deficits, neuron death and glia activation, whereas CARD6 overexpression resulted in the opposite effects. Both in vivo and in vitro SCI models suggested that CARD6 knockout markedly promoted apoptosis by increasing Cyto-c release to cytosol from mitochondria and activating Caspase-3 signaling. In addition, CARD6 knockout mice exhibited stronger inflammatory response after SCI, as evidenced by the significantly elevated expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6, which was largely through enhancing the activation of NF-κB signaling.
Collapse
Affiliation(s)
- Jiang Lin Wang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiao Luo
- Department of Pain Management, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
19
|
Park HH. Domain swapping of death domain superfamily: Alternative strategy for dimerization. Int J Biol Macromol 2019; 138:565-572. [DOI: 10.1016/j.ijbiomac.2019.07.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023]
|
20
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Quan Y, Gong L, He J, Zhou Y, Liu M, Cao Z, Li Y, Peng C. Aloe emodin induces hepatotoxicity by activating NF-κB inflammatory pathway and P53 apoptosis pathway in zebrafish. Toxicol Lett 2019; 306:66-79. [PMID: 30771440 DOI: 10.1016/j.toxlet.2019.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the hepatotoxic effect and its underlying mechanism of aloe emodin (AE). AE was docked with the targets of NF-κB inflammatory pathway and P53 apoptosis pathway respectively by using molecular docking technique. To verify the results of molecular docking and further investigate the hepatotoxicity mechanism of AE, the zebrafish Tg (fabp10: EGFP) was used as an animal model in vivo. The pathological sections of zebrafish liver were analyzed to observe the histopathological changes and Sudan black B was used to study whether there were inflammatory reactions in zebrafish liver or not. Then TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect the apoptotic signal of zebrafish liver cells, finally the mRNA expression levels as well as the protein expression levels of the targets in NF-κB and P53 pathways in zebrafish were measured by quantitative Real-Time PCR (qRT-PCR) and western blot. Molecular docking results showed that AE could successfully dock with all the targets of NF-κB and P53 pathways, and the docking scores of most of the targets were equal to or higher than that of the corresponding ligands. Pathological sections showed AE could cause zebrafish liver lesions and the result of Sudan black B staining revealed that AE blackened the liver of zebrafish with Sudan black B. Then TUNEL assay showed that a large number of dense apoptotic signals were observed in AE group, mainly distributed in the liver and yolk sac of zebrafish. The results of qRT-PCR and western blot showed that AE increased the mRNA and protein expression levels of pro-inflammatory and pro-apoptotic targets in NF-κB and P53 pathways. AE could activate the NF-κB inflammatory pathway and the P53 apoptosis pathway, and its hepatotoxic mechanism was related to activation of NF-κB-P53 inflammation-apoptosis pathways.
Collapse
Affiliation(s)
- Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
22
|
Park HH. Caspase recruitment domains for protein interactions in cellular signaling (Review). Int J Mol Med 2019; 43:1119-1127. [PMID: 30664151 PMCID: PMC6365033 DOI: 10.3892/ijmm.2019.4060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The caspase recruitment domain (CARD), a well-known protein interaction module, belongs to the death domain (DD) superfamily, which includes DDs, death effector domains, and pyrin domains. The DD superfamily mediates the protein interactions necessary for apoptosis and immune cell signaling pathways. Among these domains, the CARD has been studied extensively as it mediates important cellular signaling events that are associated with various human diseases including cancer, neuro-degenerative diseases and immune disorders. Homo-type and hetero-type CARD-CARD interactions mediate the formation of large signaling complexes, including caspase-activating complexes and downstream signaling complexes. The present review summarizes and discusses the results of structural studies of various CARDs and their complexes. These studies shed light on the mechanisms that control the assembly and disassembly of signaling complexes and provide an improved understanding of cellular signaling processes.
Collapse
Affiliation(s)
- Hyun Ho Park
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
Sun P, Zeng Q, Cheng D, Zhang K, Zheng J, Liu Y, Yuan YF, Tang YD. Caspase Recruitment Domain Protein 6 Protects Against Hepatic Steatosis and Insulin Resistance by Suppressing Apoptosis Signal-Regulating Kinase 1. Hepatology 2018; 68:2212-2229. [PMID: 29729191 DOI: 10.1002/hep.30075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
The rapidly increasing prevalence of metabolic disorders associated with nonalcoholic fatty liver disease (NAFLD) warrants further study of the underlying mechanisms to identify key regulators as targets for the development of therapeutic interventions. Caspase recruitment domain protein 6 (Card6), as a member of the CARD family that regulates cell death and immunity, may potentially control this process. Indeed, Card6 down-regulation was found to be closely associated with the fatty livers observed in NAFLD patients, obese mice, and a palmitate-treated hepatocyte model. Gain-of-function and loss-of-function Card6 mouse models demonstrated that Card6 protected mice from insulin resistance, hepatic steatosis, and inflammatory responses upon high-fat diet administration. Mechanistically, Card6 interacted with and inhibited apoptosis signal-regulating kinase 1 (Ask1) and its subsequent downstream c-Jun N-terminal kinase/p38 signaling. Furthermore, Ask1 was sufficient to mediate Card6 function, and the interaction between Ask1 and Card6 was absolutely required for Card6 function in vivo. Adenovirus-mediated Card6 overexpression in the liver effectively ameliorated insulin resistance and hepatic steatosis in ob/ob mice. Therefore, we identified Card6 as an important negative regulator in NAFLD. Conclusion: Targeting Ask1 by Card6 may be a good strategy to develop a therapeutic method against NAFLD.
Collapse
Affiliation(s)
- Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Zeng
- Health Management Institute, Chinese PLA General Hospital, Beijing, China
| | - Daqing Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kuo Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jilin Zheng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Feng Yuan
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Qin JJ, Mao W, Wang X, Sun P, Cheng D, Tian S, Zhu XY, Yang L, Huang Z, Li H. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1. J Hepatol 2018; 69:1110-1122. [PMID: 29958938 DOI: 10.1016/j.jhep.2018.06.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The hepatic injury caused by ischemia/reperfusion (I/R) insult is predominantly determined by the complex interplay of sterile inflammation and liver cell death. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models. Thus, we hypothesized that CARD6 protects against hepatic I/R injury and investigated the underlying molecular mechanisms. METHODS A partial hepatic I/R operation was performed in hepatocyte-specific Card6 knockout mice (HKO), Card6 transgenic mice with CARD6 overexpression specifically in hepatocytes (HTG), and the corresponding control mice. Hepatic histology, serum aminotransferases, inflammatory cytokines/chemokines, cell death, and inflammatory signaling were examined to assess liver damage. The molecular mechanisms of CARD6 function were explored in vivo and in vitro. RESULTS Liver injury was alleviated in Card6-HTG mice compared with control mice as shown by decreased cell death, lower serum aminotransferase levels, and reduced inflammation and infiltration, whereas Card6-HKO mice had the opposite phenotype. Mechanistically, phosphorylation of ASK1 and its downstream effectors JNK and p38 were increased in the livers of Card6-HKO mice but repressed in those of Card6-HTG mice. Furthermore, ASK1 knockdown normalized the effect of CARD6 deficiency on the activation of NF-κB, JNK and p38, while ASK1 overexpression abrogated the suppressive effect of CARD6. CARD6 was also shown to interact with ASK1. Mutant CARD6 that lacked the ability to interact with ASK1 could not inhibit ASK1 and failed to protect against hepatic I/R injury. CONCLUSIONS CARD6 is a novel protective factor against hepatic I/R injury that suppresses inflammation and liver cell death by inhibiting the ASK1 signaling pathway. LAY SUMMARY The protein CARD6 plays an important role during the process of liver blood flow restriction (ischemia) and restoration (reperfusion). By suppressing the activity of ASK1, CARD6 can protect against hepatocyte injury. Targeting CARD6 is a potential strategy for prevention and treatment of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Juan-Juan Qin
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Wenzhe Mao
- Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Xiaozhan Wang
- Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Daqing Cheng
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Song Tian
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Xue-Yong Zhu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Ling Yang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China
| | - Zan Huang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China.
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Basic Medical School, Wuhan University, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animals of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
25
|
De Bruyne M, Hoste L, Bogaert DJ, Van den Bossche L, Tavernier SJ, Parthoens E, Migaud M, Konopnicki D, Yombi JC, Lambrecht BN, van Daele S, Alves de Medeiros AK, Brochez L, Beyaert R, De Baere E, Puel A, Casanova JL, Goffard JC, Savvides SN, Haerynck F, Staal J, Dullaers M. A CARD9 Founder Mutation Disrupts NF-κB Signaling by Inhibiting BCL10 and MALT1 Recruitment and Signalosome Formation. Front Immunol 2018; 9:2366. [PMID: 30429846 PMCID: PMC6220056 DOI: 10.3389/fimmu.2018.02366] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Inherited CARD9 deficiency constitutes a primary immunodeficiency predisposing uniquely to chronic and invasive fungal infections. Certain mutations are shown to negatively impact CARD9 protein expression and/or NF-κB activation, but the underlying biochemical mechanism remains to be fully understood. Objectives: To investigate a possible founder origin of a known CARD9 R70W mutation in five families of Turkish origin. To explore the biochemical mechanism of immunodeficiency by R70W CARD9. Methods: We performed haplotype analysis using microsatellite markers and SNPs. We designed a model system exploiting a gain-of-function (GOF) CARD9 L213LI mutant that triggers constitutive NF-κB activation, analogous to an oncogenic CARD11 mutant, to study NF-κB signaling and signalosome formation. We performed reporter assays, immunoprecipitation and confocal imaging on HEK cells overexpressing different CARD9 variants. Results: We identified a common haplotype, thus providing evidence for a common Turkish founder. CARD9 R70W failed to activate NF-κB and abrogated NF-κB activation by WT CARD9 and by GOF CARD9. Notably, R70W CARD9 also exerted negative effects on NF-κB activation by CARD10, CARD11, and CARD14. Consistent with the NF-κB results, the R70W mutation prevented GOF CARD9 to pull down the signalosome partner proteins BCL10 and MALT1. This reflected into drastic reduction of BCL10 filamentous assemblies in a cellular context. Indeed, structural analysis revealed that position R70 in CARD9 maps at the putative interface between successive CARD domains in CARD9 filaments. Conclusions: The R70W mutation in CARD9 prevents NF-κB activation by inhibiting productive interactions with downstream BCL10 and MALT1, necessary for assembly of the filamentous CARD9-BCL10-MALT1 signalosome.
Collapse
Affiliation(s)
- Marieke De Bruyne
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Levi Hoste
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Delfien J Bogaert
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Lien Van den Bossche
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Eef Parthoens
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,VIB Bioimaging Core, VIB, Ghent, Belgium
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France
| | - Deborah Konopnicki
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Cyr Yombi
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Sabine van Daele
- Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | | | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Medical School, Imagine Institute, Paris Descartes University, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States; Pediatric Hematology-Immunology Unit, Necker Hospital, New York, NY, United States
| | | | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Melissa Dullaers
- Primary Immunodeficiency Research Lab, Department of Pulmonary Medicine, Centre for Primary Immunodeficiencies, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
26
|
Wang F, Yu Z, Wang W, Li Y, Lu G, Qu C, Wang H, Lu M, Wang L, Song L. A novel caspase-associated recruitment domain (CARD) containing protein (CgCARDCP-1) involved in LPS recognition and NF-κB activation in oyster (Crassostrea gigas). FISH & SHELLFISH IMMUNOLOGY 2018; 79:120-129. [PMID: 29751033 DOI: 10.1016/j.fsi.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Caspase-associated recruitment domain (CARD) containing proteins play critical roles in molecular interaction and regulation of various signaling pathways, such as the activation of caspase and NF-κB singling pathway in the process of apoptosis or inflammation. In the present study, a novel CARD containing protein (designed CgCARDCP-1) was identified and characterized from oyster Crassostrea gigas. Molecular feature analysis revealed that, the open reading frame (ORF) of CgCARDCP-1 gene was 759 bp encoding a polypeptide of 253 amino acids with a conserved N-terminal CARD domain and two transcriptional coactivator p15 (PC4) domains in C-terminus. Homologous alignment showed that the amino acid sequence of CgCARDCP-1 shared 30%-46% identity with that of caspase-2. By RT-PCR detection, the mRNA transcripts of CgCARDCP-1 were found to be widely distributed in various tissues of oyster with the highest expression level in hemocytes and mantle. And CgCARDCP-1 protein was mostly distributed in the cytoplasm of oyster hemocytes as shown by immunohistochemistry. Moreover, the CgCARDCP-1 mRNA expression level in hemocytes was significantly up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The recombinant CgCARDCP-1 displayed strong binding activity with LPS in vitro. In addition, after transfected into the HEK-293T cell with luciferase reporter system, CgCARDCP-1 could significantly promote the NF-κB activation (1.29-fold, p < 0.05) compared to that in the control group. These results collectively demonstrated that the CgCARDCP-1 might serve as a recognition molecule for LPS and a regulator of NF-κB activation in the immune response of oyster.
Collapse
Affiliation(s)
- Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hui Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Prevention and Control for Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
27
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
28
|
Maharana J. Elucidating the interfaces involved in CARD-CARD interactions mediated by NLRP1 and Caspase-1 using molecular dynamics simulation. J Mol Graph Model 2017; 80:7-14. [PMID: 29324327 DOI: 10.1016/j.jmgm.2017.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022]
Abstract
Inflammasomes are the multi-protein caspase-activating complexes mainly assembled by the sensor proteins (NLRs/ALRs), adaptor molecule (ASC) and effector molecule pro-caspase-1 for the production and release of proinflammatory cytokines, IL-1β and IL-18. NLRP1 is the first NLR known to assemble the multi-protein complex. Unlike NLRP3, NLRP1 has an additional effector binding domain (CARD) at the carboxyl-terminal, which is reported to interact with pro-caspase-1 (precluding the recruitment of ASC) for the transmission of danger signals. So far no direct interaction has been observed between the NLRP1 and CASP1 at the structural level. In this study, an attempt has been made to elucidate the possible mode of interaction(s) between CASP1 and NLRP1 CARDs using structural bioinformatics approaches. The results revealed that the type-Ia patch of CASP1CARD (R10, K11, and R55) is probably the favorable interface for 1:1 interaction. Moreover, the interactions mediated in the type-II and/(or) type-III interfaces of counter CARDs can also be not ruled out altogether. Overall, the findings of this study can be beneficial in understanding the underlying molecular mechanism(s) associated with NLRP1-mediated inflammasome.
Collapse
Affiliation(s)
- Jitendra Maharana
- Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
29
|
Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs Patrol Inflammasome Activation. J Mol Biol 2017; 430:153-173. [PMID: 29024695 DOI: 10.1016/j.jmb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.
Collapse
Affiliation(s)
- Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Ha HJ, Park HH. Molecular basis for the effect of the L31F mutation on CARD function in ARC. FEBS Lett 2017; 591:2919-2928. [PMID: 28792591 DOI: 10.1002/1873-3468.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
The apoptosis repressor with caspase-recruiting domain (ARC) is aberrantly overexpressed in various cancers. ARC contains a caspase recruitment domain (CARD) that is the main mediator of protein-protein interactions. Mutation of Leu31 within the CARD of ARC to Phe (ARC_L31F) is widely used as a functionally defective mutant of ARC despite a lack of clear experimental evidence regarding how its functionality is lost. In this study, we show that L31 in helix 2 (H2) is critical for stabilization of the helix bundle fold in the CARD domain. In addition, the L31F mutation disrupts homodimer formation that is critical to ARC functions. Our current study reveals the molecular basis for the L31F mutation disrupting the ARC CARD functions.
Collapse
Affiliation(s)
- Hyun Ji Ha
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate school of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hyun Ho Park
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate school of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
31
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
32
|
Hou Z, Ye Z, Zhang D, Gao C, Su B, Song L, Tan F, Song H, Wang Y, Li C. Characterization and expression profiling of NOD-like receptor C3 (NLRC3) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 66:231-239. [PMID: 28478262 DOI: 10.1016/j.fsi.2017.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The mucosal surfaces are important for teleost as they are directly and continuously exposed to pathogen-rich aquatic environments. Scrutinization and recognition of the attached pathogens is the first crucial step of mucosal immunity initiation. Nucleotide oligomerization domain (NOD)-like receptors (NLRs) are a large group of intracellular pathogen recognition receptors (PRRs) which play key roles in pathogen recognition and subsequent immune signaling pathways activation. In this study, we identified two NLRC3 genes (NLRC3a and NLRC3b), a subfamily of NLRs from turbot, and profiled their expression patterns in mucosal tissues following bacterial challenge. NLRC3a transcript contains an open reading frame (ORF) of 3405 bp that encodes a putative peptide of 1134 amino acids. While NLRC3b has an ORF of 3114 bp encoding 1037 amino acids. A caspase recruitment domain (CARD) at N-terminus characterized turbot NLRC3a, while NLRC3b seems to be unique to teleost, containing a fish specific NACHT associated (FISNA) domain and an extra B30.2 (PRY/SPRY) domain at C-terminus. In addition, NLRC3a and NLRC3b were detected in all the examined tissues, with the highest expression levels in kidney and blood, respectively. After bacteria challenge, expression levels of turbot NLRC3 genes were strongly induced in intestine rather than in skin and gill, while NLRC3a had relatively higher expression level than that of NLRC3b. Taken together, NLRC3 genes found in this study were the first NLR members identified in turbot. The different expression signatures of NLRC3a and NLRC3b in mucosal tissues following two bacterial infections indicated they probably have important roles in early response to bacterial infection in the first line of host defense system.
Collapse
Affiliation(s)
- Zhumei Hou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi Ye
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Dongdong Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao 266109, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
33
|
Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome. Structure 2017; 25:407-420. [PMID: 28111022 DOI: 10.1016/j.str.2016.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 01/07/2023]
Abstract
Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly.
Collapse
|
34
|
Huang Y, Yu Y, Yang Y, Yang M, Zhou L, Huang X, Qin Q. Antiviral function of grouper MDA5 against iridovirus and nodavirus. FISH & SHELLFISH IMMUNOLOGY 2016; 54:188-196. [PMID: 27050314 DOI: 10.1016/j.fsi.2016.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Linli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Abramson J, Husebye ES. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 2016; 271:127-40. [PMID: 27088911 DOI: 10.1111/imr.12419] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The establishment of central tolerance in the thymus is critical for avoiding deleterious autoimmune diseases. Autoimmune regulator (AIRE), the causative gene in autoimmune polyendocrine syndrome type-1 (APS-1), is crucial for the establishment of self-tolerance in the thymus by promoting promiscuous expression of a wide array of tissue-restricted self-antigens. This step is critical for elimination of high-affinity self-reactive T cells from the immunological repertoire, and for the induction of a specific subset of Foxp3(+) T-regulatory (Treg ) cells. In this review, we discuss the most recent advances in our understanding of how AIRE operates on molecular and cellular levels, as well as of how its loss of function results in breakdown of self-tolerance mechanisms characterized by a broad and heterogeneous repertoire of autoimmune phenotypes.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
36
|
Abstract
Inflammasomes are protein complexes that promote the maturation and release of pro-inflammatory cytokines and danger signals as well as pyroptosis in response to infections and cellular stress. Inflammasomes consist of a sensor, an adapter, and the effector caspase-1, which interact through homotypic interactions of caspase recruitment domains (CARDs) or PYRIN domains (PYDs). Hence, decoy proteins encoding only a CARD or PYD, COPs and POPs, respectively, are assumed to inhibit inflammasome assembly. Sensors encoding a PYD belong to the families of NOD-like receptors containing a PYD (NLRPs) or AIM2-like receptors (ALRs), which interact with the PYD- and CARD-containing adapter ASC through homotypic PYD interactions. Subsequently, ASC undergoes PYD-dependent oligomerization, which promotes CARD-mediated interactions between ASC and caspase-1, resulting in caspase-1 activation. POPs are suggested to interfere with the interaction between NLRPs/ALRs and ASC to prevent nucleation of ASC and therefore prevent an oligomeric platform for caspase-1 activation. Similarly, COPs are suggested to bind to the CARD of caspase-1 to prevent its recruitment to the oligomeric ASC platform and its activation. Alternatively, the adapter ASC may regulate inflammasome activity by expressing different isoforms, which are either capable or incapable of assembling an oligomeric ASC platform. The molecular mechanism of inflammasome assembly has only recently been elucidated, but the effects of most COPs and POPs on inflammasome assembly have not been investigated. Here, we discuss our model of COP- and POP-mediated inflammasome regulation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
37
|
Abramson J, Goldfarb Y. AIRE: From promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol 2016; 46:22-33. [PMID: 26450177 DOI: 10.1002/eji.201545792] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Autoimmune regulator (AIRE) is a unique transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. The past 15 years have seen dramatic progress in our understanding of how AIRE induces immunological self-tolerance on a molecular level. This major advancement can be greatly attributed to the identification of a large variety of proteins that physically associate with AIRE, supporting and regulating its transcription-transactivation capacity. These diverse molecular partnerships have been shown to play roles in shuttling AIRE to the nucleus, securing AIRE's interaction with nuclear matrix and chromatin, releasing RNA polymerase-II from its stalled state and potentiating AIRE-mediated gene expression, among others. In this review we discuss the relationship of AIRE with its vast and rather diverse repertoire of partners and highlight how such "promiscuous partnerships" contribute to the phenomenon of "promiscuous gene expression" in the thymus.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Lv J, Feng M, Zhang L, Wan X, Zeng YC, Liang PF, Xu AP. Protective effect of epigallocatechin gallate, a major constituent of green tea, against renal ischemia-reperfusion injury in rats. Int Urol Nephrol 2015; 47:1429-35. [PMID: 26122117 PMCID: PMC4518080 DOI: 10.1007/s11255-015-1030-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/07/2015] [Indexed: 10/27/2022]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) injury plays an important role in the acute kidney injury. The pathogenetic mechanisms potential I/R injury is involved in apoptosis and inflammation. Epigallocatechin gallate (EGCG), a major constituent of green tea, has been shown to have anti-inflammatory and anti-apoptotic activities. This study aimed to explore the underlying effects and mechanisms of EGCG on renal I/R injury in a rat model. MATERIALS AND METHODS We induced renal I/R injury in SD rats by clamping the left renal artery for 45 min followed by 24-h reperfusion, along with a contralateral nephrectomy. We randomly allocated 30 rats to three groups (n = 10): sham group, IRI group, and EGCG group. We preconditioned rats intraperitoneally with EGCG (50 mg/kg) or vehicle (50 mg/kg) 45 min before inducing renal ischemia. We collected serum and kidneys at 24 h after reperfusion. Renal function and histologic damage were assessed. We also determined markers of inflammation and apoptosis in kidneys or serum. RESULTS EGCG pretreatment can significantly reduce renal dysfunction, histologic change and the expression of tumor necrosis factor-α, IL-1β, IL-6, Bax and cleavage caspase 3 induced by I/R injury and increase the expression of Bax and caspase 3. Moreover, EGCG pretreatment can further induce the activation of p38 mitogen-activated protein kinase in kidney, with no influence on the expression of p38. CONCLUSIONS EGCG treatment can decrease renal ischemia-reperfusion injury by suppressing inflammation and cell apoptosis. Thus, EGCG may represent a potential strategy to reduce renal I/R injury.
Collapse
Affiliation(s)
- Jun Lv
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|