1
|
Ping Z, Guo Z, Lu M, Chen Y, Liu L. Association of CIDEB gene promoter methylation with overweight or obesity in adults. Aging (Albany NY) 2022; 14:3607-3616. [PMID: 35475772 PMCID: PMC9085220 DOI: 10.18632/aging.204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022]
Abstract
Objective: To explore the association of the methylation level of cell death-inducing DFF45-like effector B (CIDEB) gene promoter with overweight or obesity in the abdominal subcutaneous adipose tissue (SAT) and omental adipose tissue (OAT) of adults. Methods: A total of 61 patients undergoing abdominal surgery in the hospital were selected with an average age of 51.87 years. According to the diagnostic criteria of Chinese adult obesity, the subjects were divided into normal-weight group (n = 28) and overweight/obesity group (n = 33). CIDEB promoter methylation level in abdominal SAT and OAT was detected by the MethylTarget technology, then its relationship with overweight or obesity was analyzed. Results: (1) There were no statistical differences between the normal-weight group and overweight/obesity group in Methylation levels of 16 CpG sites in the CIDEB gene promoter sequence. (2) The methylation level of OAT was higher than that of SAT, and there were significant differences in 16 CpG sites. (3) There were 3 statistically significant haplotypes between the normal-weight group and overweight/obesity group (2 in SAT and 1 in OAT). Conclusions: The methylation level of CIDEB gene promoter in abdominal SAT and OAT may be related to overweight or obesity in adults, and the specific regulatory mechanism needs to be further studied.
Collapse
Affiliation(s)
- Zhiguang Ping
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyan Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Lu
- Nursing Department of Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Yanzi Chen
- Henan Huapu Pharmaceutical Technology Co., Ltd., Zhengzhou, Henan, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Ha HJ, Park HH. Molecular basis of apoptotic DNA fragmentation by DFF40. Cell Death Dis 2022; 13:198. [PMID: 35236824 PMCID: PMC8891305 DOI: 10.1038/s41419-022-04662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
AbstractAlthough the functions of CIDE domain-containing proteins, including DFF40, DFF45, CIDE-A, CIDE-B, and FSP27, in apoptotic DNA fragmentation and lipid homeostasis have been studied extensively in mammals, the functions of four CIDE domain-containing proteins identified in the fly, namely DREP1, 2, 3, and 4, have not been explored much. Recent structural study of DREP4, a fly orthologue of mammalian DFF40 (an endonuclease involved in apoptotic DNA fragmentation), showed that the CIDE domain of DREP4 (and DFF40) forms filament-like assembly, which is critical for the corresponding function. The current study aimed to investigate the mechanism of filament formation of DREP4 CIDE and to characterize the same. DREP4 CIDE was shown to specifically bind to histones H1 and H2, an event important for the nuclease activity of DREP4. Based on the current experimental results, we proposed the mechanism underlying the process of apoptotic DNA fragmentation.
Collapse
|
3
|
Lee SY, Kwon S, Ha HJ, Lee SH, Park HH. Helical filament structure of the DREP3 CIDE domain reveals a unified mechanism of CIDE-domain assembly. Acta Crystallogr D Struct Biol 2021; 77:1543-1553. [PMID: 34866610 PMCID: PMC8647176 DOI: 10.1107/s2059798321010767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
The cell-death-inducing DFF45-like effector (CIDE) domain is a protein-interaction module comprising ∼80 amino acids and was initially identified in several apoptotic nucleases and their regulators. CIDE-domain-containing proteins were subsequently identified among proteins involved in lipid metabolism. Given the involvement of CIDE-domain-containing proteins in cell death and lipid homeostasis, their structure and function have been intensively studied. Here, the head-to-tail helical filament structure of the CIDE domain of DNA fragmentation factor-related protein 3 (DREP3) is presented. The helical filament structure was formed by opposing positively and negatively charged interfaces of the domain and was assembled depending on protein and salt concentrations. Although conserved filament structures are observed in CIDE family members, the structure elucidated in this study and its comparison with previous structures indicated that the size and the number of molecules used in one turn vary. These findings suggest that this charged-surface-based head-to-tail helical filament structure represents a unified mechanism of CIDE-domain assembly and provides insight into the function of various forms of the filament structure of the CIDE domain in higher-order assembly for apoptotic DNA fragmentation and control of lipid-droplet size.
Collapse
Affiliation(s)
- So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Assembly of platforms for signal transduction in the new era: dimerization, helical filament assembly, and beyond. Exp Mol Med 2020; 52:356-366. [PMID: 32139779 PMCID: PMC7156525 DOI: 10.1038/s12276-020-0391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 11/08/2022] Open
Abstract
Supramolecular organizing center (SMOC)-mediated signal transduction is an emerging concept in the field of signal transduction that is ushering in a new era. The formation of location-specific, higher-order SMOCs is particularly important for cell death and innate immune signaling processes. Several protein interaction domains, including the death domain (DD) superfamily and the CIDE domain, are representative mediators of SMOC assembly in cell death and innate immune signaling pathways. DD superfamily- and CIDE domain-containing proteins form SMOCs that activate various caspases and provide signaling scaffold platforms. These assemblies can lead to signal transduction and amplification during signaling events. In this review, we summarize recent findings on the molecular basis of DD superfamily- and CIDE domain-mediated SMOC formation. Improved understanding of large molecular signaling complexes that form during innate (nonspecific) immune responses could help develop treatments for multiple diseases including cancer. Correct cell signaling requires precise protein interactions and binding, which are mediated by specific sites on the surface of the protein molecules involved. Innate immune responses and cell death mechanisms rely on such protein interactions, and defects can cause signaling abnormalities and trigger disease. Hyun Ho Park and co-workers at Chung-Ang University in Seoul, South Korea, reviewed recent insights into the presence of supramolecular organizing centers (SMOCs), localized complexes of signaling proteins that form during immune responses. The researchers highlight existing understanding of SMOC assembly processes. A better understanding of SMOCs will help to explain enzyme activation, signal amplification and cell signaling control mechanisms.
Collapse
|
5
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
6
|
Kim CM, Jeon SH, Choi JH, Lee JH, Park HH. Interaction mode of CIDE family proteins in fly: DREP1 and DREP3 acidic surfaces interact with DREP2 and DREP4 basic surfaces. PLoS One 2017; 12:e0189819. [PMID: 29240809 PMCID: PMC5730196 DOI: 10.1371/journal.pone.0189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022] Open
Abstract
Cell death-inducing DNA fragmentation factor 45 (DFF45)-like effector (CIDE) domains were initially identified as protein interaction modules in apoptotic nucleases and are now known to form a highly conserved family with diverse functions that range from cell death to lipid homeostasis. In the fly, four CIDE domain-containing proteins (DFF-related protein [DREP]-1–4) and their functions, including interaction relationships, have been identified. In this study, we introduced and investigated acidic side-disrupted mutants of DREP1, DREP2, and DREP3. We discovered that the acidic surface patches of DREP1 and DREP3 are critical for the homo-dimerization. In addition, we found that the acidic surface sides of DREP1 and DREP3 interact with the basic surface sides of DREP2 and DREP4. Our current study provides clear evidence demonstrating the mechanism of the interactions between four DREP proteins in the fly.
Collapse
Affiliation(s)
- Chang Min Kim
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sun Hee Jeon
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jun-Hyuk Choi
- Department of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Inchon, Republic of Korea
| | - Hyun Ho Park
- School of Natural Science, Department of Chemistry and Biochemistry and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L, Li P. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [DOI: 10.1016/j.bbalip.2017.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Profiles of teleost DNA fragmentation factor alpha and beta from rock bream (Oplegnathus fasciatus): molecular characterization and genomic structure and gene expression in immune stress. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0359-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|