1
|
Cheong HC, Sulaiman S, Looi CY, Chang LY, Wong WF. Chlamydia Infection Remodels Host Cell Mitochondria to Alter Energy Metabolism and Subvert Apoptosis. Microorganisms 2023; 11:1382. [PMID: 37374883 DOI: 10.3390/microorganisms11061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chlamydia infection represents an important cause for concern for public health worldwide. Chlamydial infection of the genital tract in females is mostly asymptomatic at the early stage, often manifesting as mucopurulent cervicitis, urethritis, and salpingitis at the later stage; it has been associated with female infertility, spontaneous abortion, ectopic pregnancy, and cervical cancer. As an obligate intracellular bacterium, Chlamydia depends heavily on host cells for nutrient acquisition, energy production, and cell propagation. The current review discusses various strategies utilized by Chlamydia in manipulating the cell metabolism to benefit bacterial propagation and survival through close interaction with the host cell mitochondrial and apoptotic pathway molecules.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Chen Q, Fu Q, Pu L, Liu X, Liu Y. Effects of HMGA2 gene silencing on cell cycle and apoptosis in the metastatic renal carcinoma cell line ACHN. J Int Med Res 2022; 50:3000605221075511. [PMID: 35118889 PMCID: PMC8819771 DOI: 10.1177/03000605221075511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the role of high mobility group AT-hook 2 (HMGA2) in the
regulation of the cell cycle and apoptosis. Methods The renal carcinoma cell line ACHN was transiently transfected with small
interfering RNA to knock down the expression of the HMGA2
gene. Cell cycle analysis was undertaken using flow cytometry. The mRNA and
protein levels of HMGA2, E2F transcription factor 1 (E2F1), cyclin D1,
cyclin dependent kinase 6 (CDK6), B-cell lymphoma-2 (Bcl-2), caspase-3 and
caspase-9 were analysed using reverse transcription quantitative real-time
polymerase chain reaction and Western blot analysis. Results The mRNA and protein levels of HMGA2 were significantly higher in renal
carcinoma cell lines compared with the human renal proximal tubular
epithelial cell line HKC. After HMGA2 gene-specific
silencing, more cells entered the G0/G1 phase, while
fewer cells entered the G2/M phase; and the cells exhibited early
and late apoptosis. HMGA2 gene-specific silencing
significantly reduced the mRNA and protein levels of E2F1, cyclin D1, CDK6
and Bcl-2; and increased the mRNA and protein levels of caspase-3 and
caspase-9. Conclusion The HMGA2 gene may be involved in the tumorigenesis and
development of renal cancer, thus inhibiting HMGA2 gene
expression might provide a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Ying Liu, Department of Urology Surgery,
The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street,
Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
3
|
Otani T, Nishihira K, Azuma Y, Yamashita A, Shibata Y, Asada Y, Hatakeyama K. Chlamydia pneumoniae is Prevalent in Symptomatic Coronary Atherosclerotic Plaque Samples Obtained From Directional Coronary Atherectomy, but its Quantity is Not Associated With Plaque Instability: An Immunohistochemical and Molecular Study. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2022; 15:2632010X221125179. [PMID: 36176379 PMCID: PMC9513565 DOI: 10.1177/2632010x221125179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Aim To clarify whether there is any association between the extent of Chlamydia pneumoniae (C. pneumoniae) infection and plaque instability or post-directional coronary atherectomy (DCA) restenosis, we determined the frequency of C. pneumoniae infection and its localization in symptomatic coronary atherosclerotic plaques using specimens obtained from DCA. Methods and results Immunohistochemistry (IHC) and real-time polymerase chain reaction (RT-PCR) revealed the existence of C. pneumoniae in all 50 specimens of coronary atherosclerotic plaques obtained by DCA. C. pneumoniae-positive cell ratio determined with IHC or copy numbers of C. pneumoniae DNA detected by RT-PCR did not differ significantly between patients with stable angina pectoris and those with acute coronary syndrome (IHC: 16.4 ± 7.6% vs 18.0 ± 7.1%, P = .42; RT-PCR: no. of cases with high copy numbers 12/25 vs 10/25, P = .78), or between patients with subsequent post-DCA restenosis and those without (IHC: 17.1 ± 8.0% vs 18.0 ± 7.4%, P = .74; RT-PCR: 5/12 vs 10/21, P = 1.00). Conclusions C. pneumoniae was highly prevalent in coronary atherosclerotic plaques of patients who underwent DCA. However, the extent of C. pneumoniae infection in coronary atherosclerotic plaques was not associated with plaque instability or post-DCA restenosis.
Collapse
Affiliation(s)
- Tomoyuki Otani
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Japan
| | - Yoshinao Azuma
- Molecular Biochemistry Lab, Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshisato Shibata
- Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Pathology, Miyazaki Medical Association Hospital, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Fu S, Ding M, Wang J, Yin X, Zhou E, Kong L, Tu X, Guo Z, Wang A, Huang Y, Ye J. Identification and functional characterization of three caspases in Takifugu obscurus in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:252-262. [PMID: 32735858 DOI: 10.1016/j.fsi.2020.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Caspases are evolutionarily conserved proteases, which are inextricably linked with the apoptosis and immune system in mammals. However, the expression pattern and function of some caspases remain largely unknown in pufferfish. In this study, three different pufferfish caspases (caspase-2 (Pfcasp-2), caspase-3 (Pfcasp-3), and caspase-8 (Pfcasp-8)) were characterized, and their expression patterns and functions were determined following Aeromonas hydrophila infection. The open reading frames of Pfcasp-2, -3, and -8 are 1,320, 846, and 1455 bp, respectively. Analyses of sequence alignment and phylogenetic tree showed that casp-2, -3, and -8 share 52%-65%, 33%-40%, 63%-78% overall sequence identities with those of other vertebrates, respectively. 3D structures of Pfcasp-2, -3, and -8 enjoy conservation in core area together, while each owns a distinctive profile. Comparisons of deduced amino acid sequences indicated that Pfcaspases possessed the caspase domain and conserved active sites like 'HG' and 'QACXG' (X for R or G). qRT-PCR results revealed that Pfcasp-2, -3, and -8 were expressed constitutively in a wide range of organs, especially in immune-related organs including whole blood and kidney. In vitro, the expressions of the three caspases (Pfcasp-2, 3, and -8) and immune-related genes (IgM and IL-8) were significantly up-regulated in kidney leukocytes after A. Hydrophila challenge and inhibitors treatment. The expressions of Pfcasp-2 and Pfcasp-3 were successfully inhibited in the kidney leukocytes by Ac-DEVD-CHO (an inhibitor to caspase-3), but the expression of Pfcasp-8 was not affected. Cellular localization analysis showed that the distribution of Pfcasp-2, -3, and -8 was in cytoplasm. Further, overexpression of Pfcasp-2, -3, or -8 was found to cause DNA damage and apoptosis, suggesting that three caspases may be related to apoptosis and mediate different apoptosis pathways in pufferfish. Moreover, the expressions of these caspases were also up-regulated in whole blood and kidney after A. hydrophila challenge, indicating their possible involvement in the immune response against A. hydrophia stimulation. Taken together, the results of this study suggest that the caspase-2,-3, and -8 may play an important role in the apoptosis and immune response in pufferfish.
Collapse
Affiliation(s)
- Shengli Fu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Mingmei Ding
- School of medicine, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Junru Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Enxu Zhou
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Linghe Kong
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao Tu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
5
|
Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. J Pharmacol Exp Ther 2020; 373:453-462. [DOI: 10.1124/jpet.120.265082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
|
6
|
Li J, Bao G, ALyafeai E, Ding J, Li S, Sheng S, Shen Z, Jia Z, Lin C, Zhang C, Lou Z, Xu H, Gao W, Zhou K. Betulinic Acid Enhances the Viability of Random-Pattern Skin Flaps by Activating Autophagy. Front Pharmacol 2019; 10:1017. [PMID: 31572190 PMCID: PMC6753397 DOI: 10.3389/fphar.2019.01017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Random-pattern skin flap replantation is commonly used to repair skin defects during plastic and reconstructive surgery. However, flap necrosis due to ischemia and ischemia-reperfusion injury limits clinical applications. Betulinic acid, a plant-derived pentacyclic triterpene, may facilitate flap survival. In the present study, the effects of betulinic acid on flap survival and the underlying mechanisms were assessed. Fifty-four mice with a dorsal random flap model were randomly divided into the control, betulinic acid group, and the betulinic acid + 3-methyladenine group. These groups were treated with dimethyl sulfoxide, betulinic acid, and betulinic acid plus 3-methyladenine, respectively. Flap tissues were acquired on postoperative day 7 to assess angiogenesis, apoptosis, oxidative stress, and autophagy. Betulinic acid promoted survival of the skin flap area, reduced tissue edema, and enhanced the number of microvessels. It also enhanced angiogenesis, attenuated apoptosis, alleviated oxidative stress, and activated autophagy. However, its effects on flap viability and angiogenesis, apoptosis, and oxidative stress were reversed by the autophagy inhibitor 3-methyladenine. Our findings reveal that betulinic acid improves survival of random-pattern skin flaps by promoting angiogenesis, dampening apoptosis, and alleviating oxidative stress, which mediates activation of autophagy.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Eman ALyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shihen Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shimin Sheng
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zitong Shen
- Renji College of Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Jia
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhiling Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Chen H, Wen Y, Li Z. Clear Victory for Chlamydia: The Subversion of Host Innate Immunity. Front Microbiol 2019; 10:1412. [PMID: 31333596 PMCID: PMC6619438 DOI: 10.3389/fmicb.2019.01412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
As obligate intracellular bacterial pathogens, members of the Chlamydia genera are the pivotal triggers for a wide range of infections, which can lead to blinding trachoma, pelvic inflammation, and respiratory diseases. Because of their restricted parasitism inside eukaryotic cells, the pathogens have to develop multiple strategies for adaptation with the hostile intracellular environment—intrinsically present in all host cells—to survive. The strategies that are brought into play at different stages of chlamydial development mainly involve interfering with diverse innate immune responses, such as innate immune recognition, inflammation, apoptosis, autophagy, as well as the manipulation of innate immune cells to serve as potential niches for chlamydial replication. This review will focus on the innate immune responses against chlamydial infection, highlighting the underlying molecular mechanisms used by the Chlamydia spp. to counteract host innate immune defenses. Insights into these subtle pathogenic mechanisms not only provide a rationale for the augmentation of immune responses against chlamydial infection but also open avenues for further investigation of the molecular mechanisms driving the survival of these clinically important pathogens in host innate immunity.
Collapse
Affiliation(s)
- Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
8
|
Apoptosis Effects of Dihydrokaempferol Isolated from Bauhinia championii on Synoviocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9806160. [PMID: 30622621 PMCID: PMC6304658 DOI: 10.1155/2018/9806160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/01/2018] [Accepted: 11/25/2018] [Indexed: 02/08/2023]
Abstract
Bauhinia championii (Benth.) Benth. is a traditional medicinal plant used in China to treat rheumatoid arthritis (RA), especially in She ethnic minority group. This study focused on the active constituents from the rattan of B. championii (Benth.) Benth., which possess potential apoptosis effects. A conventional phytochemical separation method for the isolation of compounds from the ethyl acetate extract of B. championii was developed. The procedure involved extraction, liquid–liquid partitioning with ethyl acetate, and subsequent compound purification, respectively. Additionally, cell viability of dihydrokaempferol found abundantly in it was evaluated in vitro by MTS, and the antiapoptosis effect was evaluated by annexin V/PI staining (Flow Cytometry Analysis) and western blot. The results showed that nine flavonoids, and five other compounds, were isolated from the ethyl acetate extract of B. championii and were identified as β-sitosterol (1), 5,6,7,3',4',5'-hexamethoxyflavone (2), 3',4',5,7-tetrahydroxyflavone (3), 5,7,3',4',5'-pentamethoxyflavone (4), 4'-hydroxy-5,7,3',5'-pentamethoxyflavone (5), apigenin (6), liquiritigenin (7), 5, 7-dihydroxylcoumarin (8), 3',4',5,7, -pentamethoxyflavone (9), n-octadecanoate (10), lupine ketone (11), dibutylphthalate (12), dihydrokaempferol (13), and 5,7,3′,5′-tetrahydroxy-6-methylflavanone (14). Among these compounds, 5-14 were isolated for the first time from B. championii. In addition, apoptosis effects of abundant dihydrokaempferol were evaluated in vitro. Dihydrokaempferol exhibited inhibitory effects on the proliferation of synoviocytes. Furthermore, dihydrokaempferol promoted Bax and Bad expression, as well as the cleavage of caspase-9, caspase-3, and PARP. Meanwhile, it inhibited Bcl-2 and Bcl-xL expression. These findings indicate that dihydrokaempferol isolated from the ethyl acetate extract of B. championii effectively promotes apoptosis, which is an important process through suppression of apoptotic activity. The results are encouraging for further studies on the use of B. championii in the treatment of RA.
Collapse
|
9
|
Zhang Y, Zhang XX, Yuan RY, Ren T, Shao ZY, Wang HF, Cai WL, Chen LT, Wang XA, Wang P. Cordycepin induces apoptosis in human pancreatic cancer cells via the mitochondrial-mediated intrinsic pathway and suppresses tumor growth in vivo. Onco Targets Ther 2018; 11:4479-4490. [PMID: 30122940 PMCID: PMC6078188 DOI: 10.2147/ott.s164670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Cordycepin, the main active ingredient of a traditional Chinese herbal remedy - extracted from Cordyceps sinensis - has been demonstrated as a very effective anti-inflammatory and antitumor drug. The present study investigated its antitumor effect on pancreatic cancer, a highly aggressive cancer with extremely poor prognosis due to malignancy, and clarified its underlying mechanism both in vitro and in vivo. Methods The antitumor viability of cordycepin on human pancreatic cancer MIAPaCa-2 and Capan-1 cells was determined by colony formation assays. Annexin V/PI double staining and flow cytometry assay were used to investigate whether cordycepin induced apoptosis and cell cycle arrest. The mitochondrial membrane potential (ΔΨm) was analyzed by Rhodamine 123 staining, and expression of related proteins evaluated by Western blot and immunohistochemistry, both on pancreatic cancer cells and tumor xenografts to reveal the potential mechanism for the effect of cordycepin. Furthermore, the in vivo efficacy was examined on nude mice bearing MIAPaCa-2 cell tumors treated by intraperitoneal injection of cordycepin (0, 15, and 50 mg/kg/d) for 28 days. Results Cordycepin inhibited cell viability, proliferation and colony formation ability and induced cell cycle arrest and early apoptosis of human pancreatic cancer cells (MIAPaCa-2 and Capan-1) in a dose- and time-dependent manner. The same effect was also observed in vivo. Decrease of ΔΨm and upregulation of Bax, cleaved caspase-3, cleaved caspase-9, and cleaved PARP as well as downregulation of Bcl-2 both in vitro and in vivo indicated that the mitochondria-mediated intrinsic pathway was involved in cordycepin's antitumor effect. Conclusion Our data showed that cordycepin inhibited the activity of pancreatic cancer both in vitro and in vivo by regulating apoptosis-related protein expression through the mitochondrial pathway and suggest that cordycepin may be a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| | - Xiao Xi Zhang
- Shanghai Health Development Research Center, Shanghai 200040, People's Republic of China
| | - Rui Yan Yuan
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Tai Ren
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Zi Yu Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Hong Fei Wang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Wei Long Cai
- Department of General Surgery, Huzhou Central Hospital, Zhejiang 313000, People's Republic of China
| | - Li Tian Chen
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, .,Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Xu An Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China, ,
| | - Ping Wang
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou 310006, People's Republic of China
| |
Collapse
|
10
|
Zou Y, Dai W, Lei W, Su S, Huang Q, Zhou Z, Chen C, Li Z. Identification of proteins interacting with pORF5 in the pathogenesis of C. trachomatis. Am J Transl Res 2018; 10:1633-1647. [PMID: 30018706 PMCID: PMC6038076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/21/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE This study is to identify and investigate the proteins interacting with pORF5 implicated in the pathogenesis of C. trachomatis. METHODS The isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with nano liquid chromatography-tandem mass spectrometry (NanoLC-MS/MS) analysis was applied to identify and quantify the differentially expressed proteins in the pORF5-transfected HeLa (pORF5-HeLa) cells and the control vector-transfected HeLa (vector-HeLa) cells. Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the mRNA and protein expression levels. RESULTS Totally 3355 proteins were quantified by employing biological replicates, 314 of which were differentially expressed between the pORF5-HeLa and vector-HeLa cells. Nine differentially expressed proteins (HIST1H1C, HBA1, PARK7, HMGB1, HMGB2, CLIC1, KRT7, SFN, and CDKN2A) were subjected to qRT-PCR, and two over-expressed proteins (HMGB1 and PRAK7) were subjected to the Western blot analysis, to validate the proteomic results. The results from the qRT-PCR and Western blot analysis were consistent with the findings from the proteomic analysis. Moreover, pORF5 could inhibit the TNF-α-induced apoptosis in HeLa cells. Through siRNA-mediated functional screening, the high-mobility group box 1 (HMGB1) was shown to be relevant to the inhibition of the apoptotic response in the host cells. CONCLUSION Identification of key proteins interacting with pORF5 could contribute to the understanding and further exploration of the function of pORF5 in the pathogenic mechanisms of C. trachomatis.
Collapse
Affiliation(s)
- Yan Zou
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Wenting Dai
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Shengmei Su
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Qiulin Huang
- Department of General Surgery, The First Affiliated Hospital of University of South ChinaHengyang 421001, Hunan, China
| | - Zhou Zhou
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug StudyHengyang 421001, Hunan, China
| |
Collapse
|
11
|
Aziz MA, Ushirokita R, Azuma Y. Identification of Chlamydia pneumoniae candidate genes that interact with human apoptotic factor caspase-9. J GEN APPL MICROBIOL 2018; 64:253-257. [PMID: 29760350 DOI: 10.2323/jgam.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chlamydia pneumoniae is an obligate intracellular pathogen responsible for respiratory diseases, including pneumonia and bronchitis, and is highly involved in chronic diseases, including atherosclerosis, asthma, and Alzheimer's disease. We previously showed that the host apoptotic factor caspase-9 played a crucial role for chlamydial multiplication and host apoptosis inhibition by chlamydial infection. To identify chlamydial genes interacting with human caspase-9, yeast two-hybrid screening was performed and 5 chlamydial genes, including Cpj0838 and pmpG were isolated from the C. pneumoniae genomic library. Pull-down experiments showed that caspase-9 physically bound to the Cpj0838 product and chlamydial cells, which contain PmpG proteins. This study could provide a clue to understanding host-Chlamydia interactions, especially the apoptosis repression by Chlamydia infection.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | - Rie Ushirokita
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | - Yoshinao Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
12
|
Zhou X, Chang Y, Zhan Y, Wang X, Lin K. Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber Apostichopus japonicus based on transcriptome database. FISH & SHELLFISH IMMUNOLOGY 2018; 72:69-76. [PMID: 29054825 DOI: 10.1016/j.fsi.2017.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) constitute a family of endogenous non-coding small RNAs that have been demonstrated to be the key effectors in mediating host-pathogen interactions. Additionally, high-throughput sequencing provides unexampled opportunities to identify the pathogenic mechanism underlying miRNAs. In the present study, the target genes of immune-related miRNAs (miR-31, miR-2008, miR-92a, miR-210 and miR-7) and specific miRNAs (miR-2004) in Echinodermata were predicted in silico and validated. Gene ontology (GO) analysis of the target genes of these six miRNAs were conducted to further understand the regulatory function in the host immunity of Apostichopus japonicus (A. japonicus). Among the putative target genes of the six miRNAs, various immune-related targets were annotated, such as Nephl, SEC14Ll, p105, GL2, LYS, FNIAL, mTOR, LITAF, SLC44, TLR3, Apaf-1, and CNTN4. This work will provide valuable genetic resources to understand the interaction of multiple mRNA-miRNAs and the regulation mechanism in the anti-bacterial process in the sea cucumber.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xiuli Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Kai Lin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
13
|
Bugueno IM, Batool F, Korah L, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis Differentially Modulates Apoptosome Apoptotic Peptidase Activating Factor 1 in Epithelial Cells and Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:404-416. [PMID: 29154960 DOI: 10.1016/j.ajpath.2017.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Porphyromonas gingivalis is able to invade and modulate host-immune response to promote its survival. This bacterium modulates the cell cycle and programed cell death, contributing to periodontal lesion worsening. Several molecular pathways have been identified as key triggers of apoptosis, including apoptosome apoptotic peptidase activating factor 1 (APAF-1). Apaf-1 and X-linked inhibitor of apoptosis protein (Xiap) mRNA were differentially expressed between gingival samples harvested from human healthy and chronic periodontitis tissues (Apaf-1, 19.2-fold; caspase-9, 14.5-fold; caspase-3, 6.8-fold; Xiap: 2.5-fold in chronic periodontitis) (P < 0.05), highlighting their potential role in periodontitis. An increased proteic expression of APAF-1 was also observed in a murine experimental periodontitis model induced by P. gingivalis-soaked ligatures. In vitro, it was observed that P. gingivalis targets APAF-1, XIAP, caspase-3, and caspase-9, to inhibit epithelial cell death at both mRNA and protein levels. Opposite effect was observed in fibroblasts in which P. gingivalis increased cell death and apoptosis. To assess if the observed effects were associated to APAF-1, epithelial cells and fibroblasts were transfected with siRNA targeting Apaf-1. Herein, we confirmed that APAF-1 is targeted by P. gingivalis in both cell types. This study identified APAF-1 apoptosome and XIAP as intracellular targets of P. gingivalis, contributing to the deterioration of periodontal lesion through an increased persistence of the bacteria within tissues and the subversion of host-immune response.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fareeha Batool
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Linda Korah
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM 1260 Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculty of Dental Surgery, Periodontology, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Sulforaphane-cysteine-induced apoptosis via phosphorylated ERK1/2-mediated maspin pathway in human non-small cell lung cancer cells. Cell Death Discov 2017; 3:17025. [PMID: 28690874 PMCID: PMC5494314 DOI: 10.1038/cddiscovery.2017.25] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
Sulforaphane (SFN) was demonstrated to induce apoptosis in a variety of cancers via multiple mechanisms. However, owing to a short half-life in circulation, SFN was not used for clinical treatment yet. Interestingly, SFN analog, sulforaphane-cysteine (SFN-Cys) has a longer half-life in metabolism, and we previously demonstrated that SFN-Cys inhibited invasion in human prostate cancer cells. Here, we would investigate whether SFN-Cys induces apoptosis and find the underlying mechanisms in human non-small cell lung cancer (NSCLC) cells. Western blots were used to test the molecular linkages among extracellular signal-regulated kinases 1/2 (ERK1/2) and downstream signal molecules. Flow cytometry and fluorescence microscopy were used to detect cell death. Cell proliferation assay showed that SFN-Cys inhibited cell viability following a dose-dependent manner. Abnormal cell morphology was viewed after the cells were exposed to SFN-Cys. Flow cytometry showed that SFN-Cys induced cell apoptosis via a dose-dependent manner. Further, SFN-Cys triggered the activation of ERK1/2, which resulted in the upregulation of maspin, Bax, cleaved caspase-3 and downregulation of pro-caspase-3, Bcl-2, α-tubulin. Meanwhile, we demonstrated that recombinant caspase-3 cleaved α-tubulin in the lysate of cells, which were treated by SFN-Cys. These data indicated that SFN-Cys activated the ERK1/2-mediated mitochondria signaling pathway with maspin upregulation and α-tubulin downregulation leading to apoptosis. These findings will help to develop a novel therapeutic to target NSCLC cells.
Collapse
|
15
|
Long H, Sun L. Molecular characterization reveals involvement of four caspases in the antibacterial immunity of tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2016; 57:340-349. [PMID: 27566101 DOI: 10.1016/j.fsi.2016.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Caspases are a family of proteases involved in many important biological processes including apoptosis and inflammation. In this study, we analyzed in a comparative manner the expression patterns and immune effects of four different types of caspases, i.e. caspase-1 (CsCas1), caspase-2 (CsCas2), caspase-3 (CsCas3), and caspase-9 (CsCas9), from the teleost fish tongue sole (Cynoglossus semilaevis). CsCas1, CsCas2, CsCas3, and CsCas9 share 35.4%-58.5%, 61.2%-75.3%, 52.3%-65.6%, and 63.0%-76.2% overall sequence identities, respectively, with their counterparts in teleost species. CsCas1, CsCas2, CsCas3, and CsCas9 possess the caspase domain and catalytic site conserved in known caspases. The expressions of the four caspases were detected in a wide range of tissues, however, the expression levels varied between different tissues and caspases. Following bacterial infection, the expressions of the four caspases were upregulated or downregulated to significant extents in a time- and tissue-dependent manner. In vivo analysis showed that overexpression of each of the caspases in tongue sole significantly enhanced the ability of the fish to resist bacterial dissemination in and colonization of tissues. These results indicate an involvement of fish caspases in bacteria-induced immune response and demonstrate for the first time that caspase-1, 2, 3, and 9 are essential to the optimal defense against bacterial infection in fish.
Collapse
Affiliation(s)
- Hao Long
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Bugueno IM, Khelif Y, Seelam N, Morand DN, Tenenbaum H, Davideau JL, Huck O. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells. PLoS One 2016; 11:e0154590. [PMID: 27124409 PMCID: PMC4849801 DOI: 10.1371/journal.pone.0154590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg), one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC) death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved. Methods Human umbilical vein ECs (HUVECs) were infected with Pg (MOI 100) or stimulated by its lipopolysaccharide (Pg-LPS) (1μg/ml) for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results. Results Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level. Conclusion This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Yacine Khelif
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Narendra Seelam
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - David-Nicolas Morand
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Henri Tenenbaum
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Jean-Luc Davideau
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
| | - Olivier Huck
- INSERM 1109 « Osteoarticular & Dental Regenerative Nanomedicine », Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie-dentaire, Department of Periodontology, Strasbourg, France
- * E-mail:
| |
Collapse
|
17
|
Zhuang Z, Lian P, Wu X, Shi B, Zhuang M, Zhou R, Zhao R, Zhao Z, Guo S, Ji Z, Xu K. Abate Cytochrome C induced apoptosome to protect donor liver against ischemia reperfusion injury on rat liver transplantation model. Am J Transl Res 2016; 8:1738-1747. [PMID: 27186297 PMCID: PMC4859902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. METHODS A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. RESULTS In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. CONCLUSION The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation.
Collapse
Affiliation(s)
- Zhuonan Zhuang
- Department of General Surgery, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua UniversityBeijing 102218, China
| | - Peilong Lian
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong UniversityJinan 250012, China
| | - Xiaojuan Wu
- Department of Nephrology, Huai’an Hospital Affiliated to Xuzhou Medical College and Huai’an Second HospitalHuai’an 223002, P.R. China
| | - Baoxu Shi
- Department of Neurology, People’s Hospital of RizhaolanshanRizhao 276800, China
| | - Maoyou Zhuang
- Department of Neurology, Rizhao First People HospitalRizhao 276800, China
| | - Ruiling Zhou
- Department of Clinical Lab, Rizhao First People HospitalRizhao 276800, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong UniversityJinan 250012, China
| | - Zhen Zhao
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong UniversityJinan 250012, China
| | - Sen Guo
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong UniversityJinan 250012, China
| | - Zhipeng Ji
- Department of General Surgery, The Second Affiliated Hospital of Shandong UniversityJinan 250033, China
| | - Kesen Xu
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong UniversityJinan 250012, China
| |
Collapse
|