1
|
Zhang X, Hong S, Yang J, Liu J, Wang Y, Peng J, Wang H, Hong L. Purvalanol A induces apoptosis and reverses cisplatin resistance in ovarian cancer. Anticancer Drugs 2023; 34:29-43. [PMID: 35946506 PMCID: PMC9760476 DOI: 10.1097/cad.0000000000001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Cisplatin (DDP) resistance limits therapeutic efficacy in patients diagnosed with ovarian cancer. Purvalanol A (Pur) is a novel cyclin-dependent kinase (CDK) inhibitor that has been demonstrated to induce apoptosis in various cancer cells. The present study investigated the effect of the combination treatment of Pur and DDP, and the potential anticancer mechanisms in epithelial ovarian cancer (EOC) cells in vitro and in vivo . We found that Pur enhanced the anti-tumor efficacy of cisplatin in EOC cells. The combination of Pur and DDP had more significant effects on apoptosis induction in EOC cells compared with the individual-treatment groups and the control group. We further demonstrated that the combination of Pur and DDP may trigger apoptosis and autophagy in EOC cells by inducing reactive oxygen species (ROS). And the ROS/Akt/mammalian target of rapamycin signaling pathway as a potential mechanism for the initiation of autophagy induced by combination therapy. Similar results were observed in vivo . These results demonstrated that Pur sensitized the response of EOC cells to cisplatin in vitro and in vivo , reversing the resistance to cisplatin in ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiang Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jingchun Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| |
Collapse
|
2
|
Dulińska-Litewka J, Felkle D, Dykas K, Handziuk Z, Krzysztofik M, Gąsiorkiewicz B. The role of cyclins in the development and progression of prostate cancer. Biomed Pharmacother 2022; 155:113742. [PMID: 36179490 DOI: 10.1016/j.biopha.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
The role of cyclins in hormone-dependent neoplasms is crucial in the development of the disease that is resistant to first-line therapy, as the example of breast cancer shows. However, in prostate cancer, cyclins are studied to a lesser extent. There are some well-described molecular pathways, including cyclins A1 and D1 signaling, however the role of other cyclins, e.g., D2, D3, E, and H, still requires further investigation. Recent studies indicate that cyclins regulate various cellular processes, not only the cell cycle. Furthermore, they remain in cross-talk with many other signaling pathways, e.g., MAPK/ERK, PI3K/Akt, and Notch. The androgen signaling axis, which is pivotal in prostate cancer progression, interferes with cyclin pathways at many levels. This article summarizes current knowledge on the influence of cyclins on prostate cancer progression by describing interactions between the androgen receptor and cyclins, as well as mechanisms underlying the development of resistance to currently used therapies.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland.
| | - Dominik Felkle
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Kacper Dykas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Zuzanna Handziuk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Marta Krzysztofik
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Bartosz Gąsiorkiewicz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| |
Collapse
|
3
|
Seoane R, Llamas-González YY, Vidal S, El Motiam A, Bouzaher YH, Fonseca D, Farrás R, García-Sastre A, González-Santamaría J, Rivas C. eIF5A is activated by virus infection or dsRNA and facilitates virus replication through modulation of interferon production. Front Cell Infect Microbiol 2022; 12:960138. [PMID: 35967877 PMCID: PMC9363599 DOI: 10.3389/fcimb.2022.960138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Active hypusine-modified initiation elongation factor 5A is critical for cell proliferation and differentiation, embryonic development, and innate immune response of macrophages to bacterial infection. Here, we demonstrate that both virus infection and double-stranded RNA viral mimic stimulation induce the hypusination of eIF5A. Furthermore, we show that activation of eIF5A is essential for the replication of several RNA viruses including influenza A virus, vesicular stomatitis virus, chikungunya virus, mayaro virus, una virus, zika virus, and punta toro virus. Finally, our data reveal that inhibition of eIF5A hypusination using the spermidine analog GC7 or siRNA-mediated downmodulation of eIF5A1 induce upregulation of endoplasmic reticulum stress marker proteins and trigger the transcriptional induction of interferon and interferon-stimulated genes, mechanisms that may explain the broad-spectrum antiviral activity of eIF5A inhibition.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Yessica Y. Llamas-González
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
- Programa de Doctorado en Ciencias Biológicas, Universidad de la República, Montevideo, Uruguay
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rosa Farrás
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
- Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- *Correspondence: Carmen Rivas,
| |
Collapse
|
4
|
Saleh L, Wilson C, Holen I. CDK4/6 inhibitors in breast cancer - from in vitro models to clinical trials. Acta Oncol 2020; 59:219-232. [PMID: 31671026 DOI: 10.1080/0284186x.2019.1684559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Breast cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Standard therapies aim to disrupt pathways that regulate the growth and survival of BC cells. Therapeutic agents such as endocrine therapy target hormone dependent cancer cells and have shown to be suitable approaches in BC treatment. However, in the case of metastatic BC, curative options are limited, thus strategies have been explored to improve survival and clinical benefit. In this review we provide an up to date overview of the development of anti-cancer agents, particularly the newly developed CDK4/6 inhibitors.Material and methods: A search of PubMed was conducted to identify preclinical data surrounding the development of endocrine therapy and CDK4/6 inhibitors in early and metastatic BC. Clinical data were also sought using PubMed and clinicaltrials.gov.Results: Agents targeting oestrogen and its receptor have demonstrated positive outcomes in clinical trial with improvements in objective responses and overall survival. However, patients do exhibit adverse effects and some will eventually fail to respond to endocrine therapy. Subsequently, the development and success of 3rd generation CDK4/6 inhibitors in preclinical studies has allowed their introduction in clinical studies. In patients with ER + BC, CDK4/6 have demonstrated dramatic improvements in progression free survival when used in combination with endocrine therapies. Similar findings were also observed in metastatic disease. Adverse effects were limited in CDK4/6 treated patients, demonstrating the safety of these agents.Conclusion: CDK4/6 inhibitors are highly specific making them a safe and viable therapeutic for BC and there is increasing evidence of their potential to improve survival, even in the metastatic setting. Although a number of trials have demonstrated this, as a lone therapy or in combination, optimisation of treatment scheduling are still required in further clinical investigations.
Collapse
Affiliation(s)
- Lubaid Saleh
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Caroline Wilson
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Xu X, Eshima S, Kato S, Fisher DE, Sakurai H, Hayakawa Y, Yokoyama S. Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Mol Cancer Ther 2019; 19:627-636. [PMID: 31744894 DOI: 10.1158/1535-7163.mct-19-0451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022]
Abstract
Mutation of the oncogene BRAF is among the most common genetic alterations in melanoma. BRAF inhibitors alone or in combination with MEK inhibitors fail to eradicate the tumor in most patients due to combinations of intrinsic or acquired resistance. Therefore, novel strategies are needed to improve the therapeutic efficacy of BRAF inhibition. We demonstrated that dinaciclib has potent antimelanoma effects by inducing BAK-dependent apoptosis through MCL1 reduction. Contrary to dinaciclib, the inhibitors of BRAF/MEK/CDK4/6 induced apoptosis dominantly through a BAX-dependent mechanism. Although the combination of BRAF and MEK inhibitors did not exhibit additive antimelanoma effects, their combination with dinaciclib synergistically inhibited melanoma growth both in vitro and in vivo Collectively, our present findings suggest dinaciclib to be an effective complementary drug of BAX-dependent antimelanoma drugs by targeting BAK-mediated apoptosis, and other such rational drug combinations can be determined by identifying complementary drugs activating either BAK or BAX.
Collapse
Affiliation(s)
- Xiaoou Xu
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shizuka Eshima
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shinichiro Kato
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan.,Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Massachusetts
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan. .,Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Delou JMA, Souza ASO, Souza LCM, Borges HL. Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells 2019; 8:E1013. [PMID: 31480389 PMCID: PMC6770082 DOI: 10.3390/cells8091013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Combination chemotherapy has been a mainstay in cancer treatment for the last 60 years. Although the mechanisms of action and signaling pathways affected by most treatments with single antineoplastic agents might be relatively well understood, most combinations remain poorly understood. This review presents the most common alterations of signaling pathways in response to cytotoxic and targeted anticancer drug treatments, with a discussion of how the knowledge of signaling pathways might support and orient the development of innovative strategies for anticancer combination therapy. The ultimate goal is to highlight possible strategies of chemotherapy combinations based on the signaling pathways associated with the resistance mechanisms against anticancer drugs to maximize the selective induction of cancer cell death. We consider this review an extensive compilation of updated known information on chemotherapy resistance mechanisms to promote new combination therapies to be to discussed and tested.
Collapse
Affiliation(s)
- João M A Delou
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alana S O Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonel C M Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Helena L Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
7
|
Park S, Kim YS, Kim DY, So I, Jeon JH. PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochim Biophys Acta Rev Cancer 2018; 1870:198-206. [DOI: 10.1016/j.bbcan.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022]
|
8
|
Rencüzoğullari Ö, Arısan ED, Obakan Yerlikaya P, Çoker Gürkan A, Keskin B, Palavan Ünsal N. Inhibition of extracellular signal‐regulated kinase potentiates the apoptotic and antimetastatic effects of cyclin‐dependent kinase inhibitors on metastatic DU145 and PC3 prostate cancer cells. J Cell Biochem 2018; 120:5558-5569. [DOI: 10.1002/jcb.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Özge Rencüzoğullari
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| | - Elif Damla Arısan
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| | - Pinar Obakan Yerlikaya
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| | - Ajda Çoker Gürkan
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| | - Buse Keskin
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| | - Narçin Palavan Ünsal
- Department of Molecular Biology and Genetics Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus Istanbul Turkey
| |
Collapse
|
9
|
Cristofani R, Montagnani Marelli M, Cicardi ME, Fontana F, Marzagalli M, Limonta P, Poletti A, Moretti RM. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. Cell Death Dis 2018; 9:889. [PMID: 30166521 PMCID: PMC6117300 DOI: 10.1038/s41419-018-0866-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
Abstract
Prostate cancer (PC) is one of the leading causes of death in males. Available treatments often lead to the appearance of chemoresistant foci and metastases, with mechanisms still partially unknown. Within tumour mass, autophagy may promote cell survival by enhancing cancer cells tolerability to different cell stresses, like hypoxia, starvation or those triggered by chemotherapic agents. Because of its connection with the apoptotic pathways, autophagy has been differentially implicated, either as prodeath or prosurvival factor, in the appearance of more aggressive tumours. Here, in three PC cells (LNCaP, PC3, and DU145), we tested how different autophagy inducers modulate docetaxel-induced apoptosis. We selected the mTOR-independent disaccharide trehalose and the mTOR-dependent macrolide lactone rapamycin autophagy inducers. In castration-resistant PC (CRPC) PC3 cells, trehalose specifically prevented intrinsic apoptosis in docetaxel-treated cells. Trehalose reduced the release of cytochrome c triggered by docetaxel and the formation of aberrant mitochondria, possibly by enhancing the turnover of damaged mitochondria via autophagy (mitophagy). In fact, trehalose increased LC3 and p62 expression, LC3-II and p62 (p62 bodies) accumulation and the induction of LC3 puncta. In docetaxel-treated cells, trehalose, but not rapamycin, determined a perinuclear mitochondrial aggregation (mito-aggresomes), and mitochondria specifically colocalized with LC3 and p62-positive autophagosomes. In PC3 cells, rapamycin retained its ability to activate autophagy without evidences of mitophagy even in presence of docetaxel. Interestingly, these results were replicated in LNCaP cells, whereas trehalose and rapamycin did not modify the response to docetaxel in the ATG5-deficient (autophagy resistant) DU145 cells. Therefore, autophagy is involved to alter the response to chemotherapy in combination therapies and the response may be influenced by the different autophagic pathways utilized and by the type of cancer cells.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Maria Elena Cicardi
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Angelo Poletti
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy.
| | - Roberta Manuela Moretti
- Department of Excellence: Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Efficient Promotion of Autophagy and Angiogenesis Using Mesenchymal Stem Cell Therapy Enhanced by the Low-Energy Shock Waves in the Treatment of Erectile Dysfunction. Stem Cells Int 2018; 2018:1302672. [PMID: 30228820 PMCID: PMC6136471 DOI: 10.1155/2018/1302672] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stem cell therapy (MSCT) and defocused low-energy shock wave therapy (ESWT) has been shown to ameliorate erectile dysfunction (ED). However, the interactions and effects of action between MSCT and ESWT remain poorly understood. In this study, we investigated the mechanisms of combination therapy with MSCT and ESWT in a rat model of diabetic ED. Materials and Methods Eight-week-old male Sprague-Dawley rats were randomly divided into 2 parts. Diabetic rats induced by streptozotocin (65 mg/kg) were randomly divided into 4 groups: (1) DM control group, (2) DM + ESWT group, (3) DM + MSCT group, and (4) DM + ESWT + MSCT group. The sham group was a normal control group (without streptozotocin). MSCT and (or) ESWT were, respectively, administered to each group according to the proposal for 8 weeks. Immediately after recording of intracavernous pressure (ICP), the penis was then harvested for histologic analysis, ELISA, and Western blotting. Results The ratio of ICP/MAP was significantly higher in the DM + ESWT + MSCT group than in ESWT or MSCT treated group (P < 0.05). Also, the treatment stimulated angiogenesis and vasodilatation in the corpus cavernosum (P < 0.05). ESWT increased the quantity of MSCs in the corpus cavernosum and also induced MSCs to express more VEGF in vitro and vivo (P < 0.05) which activated the PI3K/AKT/mTOR and NO/cGMP signaling pathways in the corpus cavernosum. The combination approach stimulated autophagy and decreased apoptosis in the corpus cavernosum. NGF and BDNF expressions were higher in the DM + ESWT + MSCT group than in the DM control group (P < 0.01). Furthermore, the treatment promoted the MSC recruitment by inducing penile tissues to express more PECAM and SDF-1. Conclusions Combination of LI-ESWT and MSCT can get a better result than a single treatment by expressing more VEGF which can take part in autophagy by triggering the PI3K/AKT/mTOR signaling pathway. This cooperative therapy would provide a new research direction in ED treatment for the future.
Collapse
|
11
|
Ozfiliz-Kilbas P, Sarikaya B, Obakan-Yerlikaya P, Coker-Gurkan A, Arisan ED, Temizci B, Palavan-Unsal N. Cyclin-dependent kinase inhibitors, roscovitine and purvalanol, induce apoptosis and autophagy related to unfolded protein response in HeLa cervical cancer cells. Mol Biol Rep 2018; 45:815-828. [PMID: 29978381 DOI: 10.1007/s11033-018-4222-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Pelin Ozfiliz-Kilbas
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Bahar Sarikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Benan Temizci
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
12
|
Zeng Y, Yang Y. Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP‑9 signaling pathway in DU145 cells. Mol Med Rep 2018; 17:6363-6370. [PMID: 29488612 PMCID: PMC5928620 DOI: 10.3892/mmr.2018.8653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
Piperine, an alkaloid derived from natural products, has been demonstrated to exert antitumor activities in vivo and in vitro. However, its anti-tumor effect has not yet been illustrated in the prostate cancer (PCa) metastatic process. Thus, the present study explored the influence of piperine on PCa and the underlying molecular mechanism. Cell migration was detected via the Transwell chamber model. Total protein was identified by western blot analysis. The data revealed that piperine markedly repressed cell proliferation and migration, and induced apoptosis in PCa DU145. In addition, LY294002, an protein kinase B (Akt) inhibitor, greatly suppressed the expression level of phospho (p)-Akt, matrix metalloproteinase (MMP)-9 and p-mammalian target of rapamycin (mTOR), suggesting that the activation of the Akt/mTOR/MMP-9 signaling pathway may participate in regulating cell migration in PCa. Furthermore, piperine reduced the expression of p-Akt, MMP-9 and p-mTOR. Together, these data indicated that piperine may serve as a promising novel therapeutic agent to better overcome PCa metastasis.
Collapse
Affiliation(s)
- Yuan Zeng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Ying Yang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
13
|
Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol 2017; 36:775-780. [PMID: 28777670 DOI: 10.1089/dna.2017.3750] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone malignancy with high incidence. The underlying molecular mechanisms that are associated with the development of OS need further investigation. In this study, we showed that SLC34A2, a member of the solute carrier gene family, was significantly downregulated in OS patients and cell lines. Overexpression of SLC34A2 inhibited the proliferation, migration, and invasion of OS cells. Mechanistically, we found that SLC34A2 interacted with PTEN, and inactivated the PI3K/AKT signaling pathway. Collectively, our results demonstrated that SLC34A2 plays important roles in regulating the cancer cell growth of OS. The downregulation of SLC34A2 in OS patients suggested that it might be a promising target in the diagnosis and therapy of OS.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xing Zhou
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Haidong Xu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Zhiwei He
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xin Shi
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Sujia Wu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| |
Collapse
|
14
|
Chen J, Yuan J, Zhou L, Zhu M, Shi Z, Song J, Xu Q, Yin G, Lv Y, Luo Y, Jia X, Feng L. Regulation of different components from Ophiopogon japonicus on autophagy in human lung adenocarcinoma A549Cells through PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother 2017; 87:118-126. [DOI: 10.1016/j.biopha.2016.12.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022] Open
|