1
|
Li H, Fan J, Zhao Y, Yang J, Xu H, Manthari RK, Cheng X, Wang J, Wang J. Calcium alleviates fluoride-induced kidney damage via FAS/FASL, TNFR/TNF, DR5/TRAIL pathways in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112851. [PMID: 34619480 DOI: 10.1016/j.ecoenv.2021.112851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Long-term excessive intake of fluoride (F) can cause osseous and non-osseous damage. The kidney is the main fluoride excretion organ of the body. This study aimed to explore whether dietary calcium (Ca) supplementation can alleviate kidney damage caused by fluorosis and to further investigate the effects of Ca on the mitigation mechanism of renal cell apoptosis triggered by F. We evaluated the histopathological structure, renal function indicators, and gene and protein expression levels of death receptor-mediated apoptosis pathways in Sprague Dawley (SD) rats treated with sodium fluoride (NaF) and/or calcium carbonate (CaCO3) for 120 days. The results showed that 100 mg/L NaF induced kidney histopathological injury and apoptosis, increased the concentrations of Creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN), potassium (K), phosphorus (P) and F (p < 0.05), and decrease the level of serum magnesium (Mg) (p < 0.05). Moreover, NaF increased the mRNA and protein expression levels of Fas cell surface death receptor (FAS), tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Caspase 8, Caspase 3 and poly ADP-ribose polymerase (PARP) (p < 0.01), which finally activated the death receptor pathway. Inversely, Ca supplementation reversed the decrease of CRE, BUN, UA, F and P levels induced by F, alleviated histopathological damage and apoptosis, and reduced the gene and protein expression levels of death receptor pathway-related markers. In conclusion, 1% Ca alleviates F-induced kidney apoptosis through FAS/FASL, TNFR/TNF, DR5/TRAIL signaling pathways.
Collapse
Affiliation(s)
- Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Junjiang Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huimiao Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
2
|
Arroyo R, Kingma PS. Surfactant protein D and bronchopulmonary dysplasia: a new way to approach an old problem. Respir Res 2021; 22:141. [PMID: 33964929 PMCID: PMC8105703 DOI: 10.1186/s12931-021-01738-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Surfactant protein D (SP-D) is a collectin protein synthesized by alveolar type II cells in the lungs. SP-D participates in the innate immune defense of the lungs by helping to clear infectious pathogens and modulating the immune response. SP-D has shown an anti-inflammatory role by down-regulating the release of pro-inflammatory mediators in different signaling pathways such as the TLR4, decreasing the recruitment of inflammatory cells to the lung, and modulating the oxidative metabolism in the lungs. Recombinant human SP-D (rhSP-D) has been successfully produced mimicking the structure and functions of native SP-D. Several in vitro and in vivo experiments using different animal models have shown that treatment with rhSP-D reduces the lung inflammation originated by different insults, and that rhSP-D could be a potential treatment for bronchopulmonary dysplasia (BPD), a rare disease for which there is no effective therapy up to date. BPD is a complex disease in preterm infants whose incidence increases with decreasing gestational age at birth. Lung inflammation, which is caused by different prenatal and postnatal factors like infections, lung hyperoxia and mechanical ventilation, among others, is the key player in BPD. Exacerbated inflammation causes lung tissue injury that results in a deficient gas exchange in the lungs of preterm infants and frequently leads to long-term chronic lung dysfunction during childhood and adulthood. In addition, low SP-D levels and activity in the first days of life in preterm infants have been correlated with a worse pulmonary outcome in BPD. Thus, SP-D mediated functions in the innate immune response could be critical aspects of the pathogenesis in BPD and SP-D could inhibit lung tissue injury in this preterm population. Therefore, administration of rhSP-D has been proposed as promising therapy that could prevent BPD.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave. ML7029, Cincinnati, OH, 45229-3039, USA. .,Airway Therapeutics Inc, Cincinnati, OH, 45249, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Wang W, Zheng H. Myocardial Infarction: The Protective Role of MiRNAs in Myocardium Pathology. Front Cardiovasc Med 2021; 8:631817. [PMID: 33748196 PMCID: PMC7973051 DOI: 10.3389/fcvm.2021.631817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases have been regarded as the leading cause of death around the world, with myocardial infarction (MI) being the most severe form. MI leads to myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, ultimately leading to heart failure, and death. Micro RNAs (miRNAs) participate in the genesis and progression of myocardial pathology after MI by playing an important regulatory role. This review aims to summarize all available knowledge on the role of miRNAs in the myocardial pathological process after MI to uncover potential major target pathways. In addition, the main therapeutic methods and their latest progress are also reviewed. miRNAs can regulate the main signaling pathways as well as pathological processes. Thus, they have the potential to induce therapeutic effects. Hence, the combination of miRNAs with recently developed exosome nanocomplexes may represent the future direction of therapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Hao Zheng
- Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
4
|
Watson A, Madsen J, Clark HW. SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front Immunol 2021; 11:622598. [PMID: 33542724 PMCID: PMC7851053 DOI: 10.3389/fimmu.2020.622598] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.
Collapse
Affiliation(s)
- Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Madsen
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Howard William Clark
- Neonatology, EGA Institute for Women’s Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospital (UCLH), University College London (UCL), London, United Kingdom
| |
Collapse
|
5
|
Arroyo R, Echaide M, Wilmanowski R, Martín-González A, Batllori E, Galindo A, Rosenbaum JS, Moreno-Herrero F, Kingma PS, Pérez-Gil J. Structure and activity of human surfactant protein D from different natural sources. Am J Physiol Lung Cell Mol Physiol 2020; 319:L148-L158. [PMID: 32432921 DOI: 10.1152/ajplung.00007.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Surfactant protein D (SP-D) is a C-type lectin that participates in the innate immune defense of lungs. It binds pathogens through its carbohydrate recognition domain in a calcium-dependent manner. Human surfactant protein D (hSP-D) has been routinely obtained from bronchoalveolar lavage of patients suffering from pulmonary alveolar proteinosis (PAP) and from amniotic fluid (AF). As a consequence of the disease, hSP-D obtained from PAP is found in higher amounts and is mainly composed of higher order oligomeric forms. However, PAP-hSP-D has never been directly compared with nonpathological human protein in terms of structure and biological activity. Moreover, the quantitative distribution of the different hSP-D oligomeric forms in human protein obtained from a natural source has never been evaluated. In this work, we have determined the quantitative distribution of AF-hSP-D oligomers, characterized the sugars attached through the N-glycosylation site of the protein, and compared the activity of hSP-D from AF and PAP with respect to their ability to bind and agglutinate bacteria. We have found that fuzzy balls (40%) are the most abundant oligomeric form in AF-hSP-D, very closely followed by dodecamers (33%), with both together constituting 73% of the protein mass. The glycan attached to the N-glycosylation site was found to be composed of fucose, galactose, sialic acid, and N-acetylglucosamine. Finally, in the functional assays performed, hSP-D obtained from PAP showed higher potency, probably as a consequence of its higher proportion of large oligomers compared with hSP-D from AF.
Collapse
Affiliation(s)
- Raquel Arroyo
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | | | | | - Emma Batllori
- Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain.,Department of Obstetrics and Gyneacology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alberto Galindo
- Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain.,Department of Obstetrics and Gyneacology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Fetal Medicine Unit-SAMID, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jan S Rosenbaum
- Research and Development Department, Airway Therapeutics LLC, Cincinnati, Ohio
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, National Center of Biotechnology, CSIC, Madrid, Spain
| | - Paul S Kingma
- Division of Neonatology and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institut "Hospital 12 de Octubre (imas12)", Madrid, Spain
| |
Collapse
|
6
|
Arroyo R, Khan MA, Echaide M, Pérez-Gil J, Palaniyar N. SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Commun Biol 2019; 2:470. [PMID: 31872075 PMCID: PMC6915734 DOI: 10.1038/s42003-019-0662-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
An exacerbated amount of neutrophil extracellular traps (NETs) can cause dysfunction of systems during inflammation. However, host proteins and factors that suppress NET formation (NETosis) are not clearly identified. Here we show that an innate immune collectin, pulmonary surfactant protein-D (SP-D), attenuates lipopolysaccharide (LPS)-mediated NETosis in human neutrophils by binding to LPS. SP-D deficiency in mice (Sftpd-/-) leads to excess NET formation in the lungs during LPS-mediated inflammation. In the absence of SP-D, NETs inhibit the surface-active properties of lung surfactant, essential to prevent the collapse of alveoli, the air breathing structures of the lungs. SP-D reverses NET-mediated inhibition of surfactant and restores the biophysical properties of surfactant. To the best of our knowledge, this study establishes for the first time that (i) SP-D suppresses LPS-mediated NETosis, (ii) NETs inhibit pulmonary surfactant function in the absence of SP-D, and (iii) SP-D can restore NET-mediated inhibition of the surfactant system.
Collapse
Affiliation(s)
- Raquel Arroyo
- 1Department of Biochemistry, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Research Institute "Hospital 12 de Octubre (imas12)", 28041 Madrid, Spain
- 3Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Meraj Alam Khan
- 3Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- 4Department of Laboratory Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Mercedes Echaide
- 1Department of Biochemistry, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Research Institute "Hospital 12 de Octubre (imas12)", 28041 Madrid, Spain
| | - Jesús Pérez-Gil
- 1Department of Biochemistry, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Research Institute "Hospital 12 de Octubre (imas12)", 28041 Madrid, Spain
| | - Nades Palaniyar
- 3Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- 4Department of Laboratory Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
7
|
Thakur G, Prakash G, Murthy V, Sable N, Menon S, Alrokayan SH, Khan HA, Murugaiah V, Bakshi G, Kishore U, Madan T. Human SP-D Acts as an Innate Immune Surveillance Molecule Against Androgen-Responsive and Androgen-Resistant Prostate Cancer Cells. Front Oncol 2019; 9:565. [PMID: 31355132 PMCID: PMC6637921 DOI: 10.3389/fonc.2019.00565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Surfactant Protein D (SP-D), a pattern recognition innate immune molecule, has been implicated in the immune surveillance against cancer. A recent report showed an association of decreased SP-D expression in human prostate adenocarcinoma with an increased Gleason score and severity. In the present study, the SP-D expression was evaluated in primary prostate epithelial cells (PrEC) and prostate cancer cell lines. LNCaP, an androgen dependent prostate cancer cell line, exhibited significantly lower mRNA and protein levels of SP-D than PrEC and the androgen independent cell lines (PC3 and DU145). A recombinant fragment of human SP-D, rfhSP-D, showed a dose and time dependent binding to prostate cancer cells via its carbohydrate recognition domain. This study, for the first time, provides evidence of significant and specific cell death of tumor cells in rfhSP-D treated explants as well as primary tumor cells isolated from tissue biopsies of metatstatic prostate cancer patients. Viability of PrEC was not altered by rfhSP-D. Treated LNCaP (p53+/+) and PC3 (p53 -/-) cells exhibited reduced cell viability in a dose and time dependent manner and were arrested in G2/M and G1/G0 phase of the cell cycle, respectively. rfhSP-D treated LNCaP cells showed a significant upregulation of p53 whereas a significant downregulation of pAkt was observed in both PC3 and LNCaP cell lines. The rfhSP-D-induced apoptosis signaling cascade involved upregulation of Bax:Bcl2 ratio, cytochrome c and cleaved products of caspase 7. The study concludes that rfhSP-D induces apoptosis in prostate tumor explants as well as in androgen dependent and independent prostate cancer cells via p53 and pAkt pathways.
Collapse
Affiliation(s)
- Gargi Thakur
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Gagan Prakash
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Vedang Murthy
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nilesh Sable
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Santosh Menon
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ganesh Bakshi
- Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
8
|
Xiu F, Sabz Ali Z, Palaniyar N, Sweezey N. A dual neutrophil-T cell purification procedure and methodological considerations in studying the effects of estrogen on human Th17 cell differentiation. J Immunol Methods 2019; 467:1-11. [PMID: 30771291 DOI: 10.1016/j.jim.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022]
Abstract
New procedures are required to optimize the use of blood samples to study different cell types. The purification of neutrophils and T cells from the same blood sample is not commonly described. We have previously used PolymorphPrep™ (P) or LymphoPrep™ (L) for purifying neutrophils or T cells, respectively. In this study, we describe a new method for purifying both of these cells using P and L from the same sample, and methodological considerations required to obtain consistent Th17 differentiation results. For T cell studies, we first isolated mononuclear cells from peripheral blood of healthy humans using either P alone, L alone or sequential isolation with P and then L (P + L). CD3+ lymphocytes comprise up to 73% of peripheral blood mononuclear cells (PBMCs) obtained by sequential isolation, with 29% and 36% for P and L, respectively. T lymphocyte subsets, Th1, Th17 or double-positive (Th17/1), were then amplified. Four days of amplification culture after isolation by P alone led to over-expression of Th17/1 cells and of Th17 cells in comparison to cells isolated by L or by sequential P + L. Th17/1 cells comprised 11.0 ± 6.8% (P alone) vs 1.2 ± 0.28% (L alone) vs 0.45 ± 0.11% (P + L) and Th17 cells comprised 2.8 ± 0.4% (P alone) 0.88 ± 0.15% (L alone) vs 0.86 ± 0.14% (P + L). As the second step, we examined T cell purification and differentiation. A higher purity of 97.1 ± 0.44% naïve CD4+ T cell was reached after P + L followed by immunomagnetic bead sorting in comparison to 70 ± 9.3% (L) vs 21.0 ± 8.5% (P). These cells grew well in the density range of 25, 000 to 100, 000 cells per well in 96-well plates during Th17 cell differentiation; higher or lower cell density did not support Th17 cell differentiation. Lastly, to investigate the effect of estrogen on Th17 cell differentiation, serum-free AIM V medium without phenol red was chosen to minimize the hormonal effects of the medium. We found that exogenous estrogen (1 nM) inhibited Th17 cell differentiation in this medium. Taken together, we devised a method to isolate both neutrophils and T cells from the same blood sample and show that high PBMC purity, selected culture medium and an optimal cell density of the initial cell culture produced the most robust and consistent results for Th17 differentiation.
Collapse
Affiliation(s)
- Fangming Xiu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada
| | - Zubair Sabz Ali
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Neil Sweezey
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children Research Institute, Canada; Departments of Paediatrics and Physiology, University of Toronto, Canada; Institute of Medical Sciences, University of Toronto, Canada.
| |
Collapse
|
9
|
Che R, Ding S, Zhang Q, Yang W, Yan J, Lin X. Haemolysin Sph2 of Leptospira interrogans induces cell apoptosis via intracellular reactive oxygen species elevation and mitochondrial membrane injury. Cell Microbiol 2018; 21:e12959. [PMID: 30278102 DOI: 10.1111/cmi.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, Hospital of integrated traditional Chinese and Western, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqun Yang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Du J, Abdel-Razek O, Shi Q, Hu F, Ding G, Cooney RN, Wang G. Surfactant protein D attenuates acute lung and kidney injuries in pneumonia-induced sepsis through modulating apoptosis, inflammation and NF-κB signaling. Sci Rep 2018; 8:15393. [PMID: 30337682 PMCID: PMC6193952 DOI: 10.1038/s41598-018-33828-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and sepsis are major risk factors for acute kidney injury (AKI). Patients with pneumonia and AKI are at increased risk for morbidity and mortality. Surfactant protein D (SP-D) expressed in lung and kidney plays important roles in innate immunity. However, little is known about the role of organ-specific SP-D in the sepsis. The current study uses wild type (WT), SP-D knockout (KO), and humanized SP-D transgenic (hTG, lung-specific SP-D expression) mice to study organ-specific role of SP-D in pneumonia-induced sepsis. Analyses demonstrated differential lung and kidney injury among three-type mice infected with Pseudomonas aeruginosa. After infection, KO mice showed higher injurious scores in both lung and kidney, and decreased renal function than WT and hTG mice. hTG mice exhibited comparable lung injury but more severe kidney injury compared to WT mice. Increased renal tubular apoptosis, NF-κB activation and proinflammatory cytokines in the kidney of KO mice were found when compared with WT and hTG mice. Furthermore, in vitro primary proximal tubular epithelial cells from KO mice showed more apoptosis with higher level of activated caspase-3 than those from WT mice after LPS treatment. Collectively, SP-D attenuates AKI in the sepsis by modulating renal apoptosis, inflammation and NF-κB signaling.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA.,Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Osama Abdel-Razek
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Qiao Shi
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Fengqi Hu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA.
| |
Collapse
|
11
|
|
12
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Djiadeu P, Farmakovski N, Azzouz D, Kotra LP, Sweezey N, Palaniyar N. Surfactant protein D regulates caspase-8-mediated cascade of the intrinsic pathway of apoptosis while promoting bleb formation. Mol Immunol 2017; 92:190-198. [PMID: 29107869 DOI: 10.1016/j.molimm.2017.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/10/2023]
Abstract
Surfactant-associated protein D (SP-D) is a soluble innate immune collectin present on many mucosal surfaces. We recently showed that SP-D suppresses the extrinsic pathway of apoptosis by downregulating caspase-8 activation. However, the effects of SP-D on the intrinsic pathway of apoptosis are not clearly understood. In the intrinsic pathway, cytochrome c is released by mitochondria into the cytoplasm. Oxidation of cytochrome c by cytochrome c oxidase activates the apoptosome and caspase-9 cascade. Both caspase-8- and caspase-9-mediated branches are activated in the intrinsic pathway of apoptosis; however, little is known about the relevance of the caspase-8 pathway in this context. Here we studied the effects of SP-D on different branches of the intrinsic pathway of apoptosis using UV-irradiated Jurkat T-cells. We found that SP-D does not inhibit the caspase-9 branch of apoptosis and the relevance of the caspase-8-related branch became apparent when the caspase-9 pathway was inhibited by blocking cytochrome c oxidase. Under these conditions, SP-D reduces the activation of caspase-8, executioner caspase-3 and exposure of phosphatidylserine (PS) on the membranes of dying cells. By contrast, SP-D increases the formation of nuclear and membrane blebs. Inhibition of caspase-8 confirms the effect of SP-D is unique to the caspase-8 pathway. Overall, SP-D suppresses certain aspects of the intrinsic pathway of apoptosis via reduction of caspase-8 activation and PS flipping while at the same time increasing membrane and nuclear bleb formation. This novel regulatory aspect of SP-D could help to regulate intrinsic pathway of apoptosis to promote effective blebbing and breakdown of dying cells.
Collapse
Affiliation(s)
- Pascal Djiadeu
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Nicole Farmakovski
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Dhia Azzouz
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada; Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Neil Sweezey
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Paediatrics, Physiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Nades Palaniyar
- Lung Innate Immunity Research Laboratory, Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada; Departments of Laboratory Medicine and Pathobiology and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int J Mol Sci 2017; 18:ijms18040745. [PMID: 28362341 PMCID: PMC5412330 DOI: 10.3390/ijms18040745] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small single-stranded and highly conserved non-coding RNAs, which are closely linked to cardiac disorders such as myocardial infarction (MI), cardiomyocyte hypertrophy, and heart failure. A growing number of studies have demonstrated that miRNAs determine the fate of the heart by regulating cardiac cell death and regeneration after MI. A deep understanding of the pathophysiology of miRNA dependent regulatory pathways in these processes is required. The role of miRNAs as diagnostic, prognostic, and therapeutic targets also needs to be explored in order to utilize them in clinical settings. This review summarizes the role of miRNAs in myocardial infarction and focuses mainly on their influence on cardiomyocyte regeneration and cell death including apoptosis, necrosis, and autophagy. In addition, the targets of pro- and anti-MI miRNAs are comparatively described. In particular, the possibilities of miRNA-based diagnostic and therapeutic strategies for myocardial infarction are discussed in this review.
Collapse
Affiliation(s)
- Teng Sun
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan-Han Dong
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Wei Du
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Chun-Ying Shi
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Muhammad-Akram Tariq
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Jian-Xun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Pei-Feng Li
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|